Weighted Versions of Gl-fom and Gl-gmres for Solving General Coupled Linear Matrix Equations

نویسندگان

  • Fatemeh Panjeh Ali Beik
  • Davod Khojasteh Salkuyeh
  • D. K. Salkuyeh
چکیده

More recently, Beik and Salkuyeh [F. P. A. Beik and D. K. Salkuyeh, On the global Krylov subspace methods for solving general coupled matrix equations, Computers and Mathematics with Applications, 62 (2011) 4605–4613] have presented the Gl-FOM and Gl-GMRES algorithms for solving the general coupled linear matrix equations. In this paper, two new algorithms called weighted Gl-FOM (WGl-FOM) and weighted Gl-GMRES (WGl-GMRES) are proposed for solving the general coupled linear matrix equations. In order to accelerate the speed of convergence, a new inner product is used. Invoking the new inner product and a new matrix product, the weighted global Arnoldi algorithm is introduced which will be utilized for employing the WGlFOM and WGl-GMRES algorithms to solve the linear coupled linear matrix equations. After introducing the weighted methods, some relations that link Gl-FOM (Gl-GMRES) to its weighted version are established. Numerical experiments are presented to illustrate the effectiveness of the new algorithms in comparison with Gl-FOM and Gl-GMRES for solving the linear coupled linear matrix equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

Convergence analysis of the global FOM and GMRES methods for solving matrix equations $AXB=C$ with SPD coefficients

In this paper‎, ‎we study convergence behavior of the global FOM (Gl-FOM) and global GMRES (Gl-GMRES) methods for solving the matrix equation $AXB=C$ where $A$ and $B$ are symmetric positive definite (SPD)‎. ‎We present some new theoretical results of these methods such as computable exact expressions and upper bounds for the norm of the error and residual‎. ‎In particular‎, ‎the obtained upper...

متن کامل

On the global Krylov subspace methods for solving general coupled matrix equations

In the present paper, we propose the global full orthogonalization method (Gl-FOM) and global generalized minimum residual (Gl-GMRES) method for solving large and sparse general coupled matrix equations

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Global conjugate gradient method for solving large general Sylvester matrix equation

In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and  $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$  is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013