Ergodicity of the 3d Stochastic Navier-stokes Equations Driven by Mildly Degenerate Noise

نویسنده

  • MARCO ROMITO
چکیده

We prove that the any Markov solution to the 3D stochastic Navier-Stokes equations driven by a mildly degenerate noise (i. e. all but finitely many Fourier modes are forced) is uniquely ergodic. This follows by proving strong Feller regularity and irreducibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodicity of the 3d Stochastic Navier-stokes Equations Driven by Mildly Degenerate Noises:galerkin Approximation Approach

We prove the strong Feller property and ergodicity for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes are forced) via Galerkin approximation approach.

متن کامل

Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noises

We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes are forced) via Kolmogorov equation approach.

متن کامل

Ergodicity of the Finite Dimensional Approximation of the 3d Navier-stokes Equations Forced by a Degenerate Noise

We prove ergodicity of the finite dimensional approximations of the three dimensional Navier-Stokes equations, driven by a random force. The forcing noise acts only on a few modes and some algebraic conditions on the forced modes are found that imply the ergodicity. The convergence rate to the unique invariant measure is shown to be exponential.

متن کامل

Ergodic properties of highly degenerate 2D stochastic Navier-Stokes equations

This note presents the results from “Ergodicity of the degenerate stochastic 2D Navier-Stokes equation” by M. Hairer and J. C. Mattingly. We study the Navier-Stokes equation on the two-dimensional torus when forced by a finite-dimensional Gaussian white noise and give conditions under which the system is ergodic. In particular, our results hold for specific choices of four-dimensional Gaussian ...

متن کامل

Exponential mixing for the 3D stochastic Navier–Stokes equations

We study the Navier-Stokes equations in dimension 3 (NS3D) driven by a noise which is white in time. We establish that if the noise is at same time sufficiently smooth and non degenerate in space, then the weak solutions converge exponentially fast to equilibrium. We use a coupling method. The arguments used in dimension two do not apply since, as is well known, uniqueness is an open problem fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009