Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators

نویسندگان

  • Kazufumi KIMOTO
  • Masato WAKAYAMA
چکیده

We derive an expression for the value ζQ(3) of the spectral zeta function ζQ(s) studied in [10, 11] for the non-commutative harmonic oscillator defined in [17] using a Gaussian hypergeometric function. In this study, two sequences of rational numbers, denoted J̃2(n) and J̃3(n), which can be regarded as analogues of the Apéry numbers, naturally arise and play a key role in obtaining the expressions for the values ζQ(2) and ζQ(3). We also show that the numbers J̃2(n) and J̃3(n) have congruence relations like those of the Apéry numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Apéry-like numbers arising from special values of the spectral zeta function for the non-commutative harmonic oscillator

A generalization of the Apéry-like numbers, which is used to describe the special values ζQ(2) and ζQ(3) of the spectral zeta function for the non-commutative harmonic oscillator, are introduced and studied. In fact, we give a recurrence relation for them, which shows a ladder structure among them. Further, we consider the ‘rational part’ of the higher Apéry-like numbers. We discuss several kin...

متن کامل

A Variation of Multiple L-values Arising from the Spectral Zeta Function of the Non-commutative Harmonic Oscillator

A variation of multiple L-values, which arises from the description of the special values of the spectral zeta function of the non-commutative harmonic oscillator, is introduced. In some special cases, we show that its generating function can be written in terms of the gamma functions. This result enables us to obtain explicit evaluations of them.

متن کامل

A special value of the spectral zeta function of the non-commutative harmonic osciallators

An expression of the special value ζQ(2) is obtained in [2] in terms of a certain contour integral using the solution of a singly confluent type Heun differential equation. It would be indicated that these special values are complicated enough and highly transcendental as reflecting the transcendence of the spectra of the non-commutative harmonic oscillator. ∗The research of the author is suppo...

متن کامل

Special value formula for the spectral zeta function of the non-commutative harmonic oscillator

This series is absolutely convergent in the region Rs > 1, and defines a holomorphic function in s there. We call this function ζQ(s) the spectral zeta function for the non-commutative harmonic oscillator Q, which is introduced and studied by Ichinose and Wakayama [1]. The zeta function ζQ(s) is analytically continued to the whole complex plane as a single-valued meromorphic function which is h...

متن کامل

Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry

We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008