Multiple access wiretap channel with noiseless feedback
نویسندگان
چکیده
The physical layer security in the up-link of the wireless communication systems is often modeled as the multiple access wiretap channel (MAC-WT), and recently it has received a lot attention. In this paper, the MAC-WT has been re-visited by considering the situation that the legitimate receiver feeds his received channel output back to the transmitters via two noiseless channels, respectively. This model is called the MAC-WT with noiseless feedback. Inner and outer bounds on the secrecy capacity region of this feedback model are provided. To be specific, we first present a decode-and-forward (DF) inner bound on the secrecy capacity region of this feedback model, and this bound is constructed by allowing each transmitter to decode the other one’s transmitted message from the feedback, and then each transmitter uses the decoded message to re-encode his own messages, i.e., this DF inner bound allows the independent transmitters to co-operate with each other. Then, we provide a hybrid inner bound which is strictly larger than the DF inner bound, and it is constructed by using the feedback as a tool not only to allow the independent transmitters to co-operate with each other, but also to generate two secret keys respectively shared between the legitimate receiver and the two transmitters. Finally, we give a sato-type outer bound on the secrecy capacity region of this feedback model. The results of this paper are further explained via a Gaussian example.
منابع مشابه
Finite State Multiple-Access Wiretap Channel with Delayed Feedback
Recently, the finite state Markov channel (FSMC) with an additional eavesdropper and delayed feedback from the legitimate receiver to the transmitter has been shown to be a useful model for the physical layer security of the practical mobile wireless communication systems. In this paper, we extend this model to a multiple-access situation (up-link of the wireless communication systems), which w...
متن کاملWiretap Channel in the Presence of Action-Dependent States and Noiseless Feedback
We investigate the wiretap channel in the presence of action-dependent states and noiseless feedback. Given the message to be communicated, the transmitter chooses an action sequence that affects the formation of the channel states and then generates the channel input sequence based on the state sequence, the message, and the noiseless feedback, where the noiseless feedback is from the output o...
متن کاملFeeding Back the Output or Sharing the State: Which Is Better for the State-Dependent Wiretap Channel?
In this paper, the general wiretap channel with channel state information (CSI) at the transmitter and noiseless feedback is investigated, where the feedback is from the legitimate receiver to the transmitter, and the CSI is available at the transmitter in a causal or noncausal manner. The capacity-equivocation regions are determined for this model in both causal and noncausal cases, and the re...
متن کاملBounds for Multiple-Access Relay Channels with Feedback via Two-way Relay Channel
In this study, we introduce a new two-way relay channel and obtain an inner bound and an outer bound for the discrete and memoryless multiple access relay channels with receiver-source feedback via two-way relay channel in which end nodes exchange signals by a relay node. And we extend these results to the Gaussian case. By numerical computing, we show that our inner bound is the same with o...
متن کاملGeneralizing Multiple Access Wiretap and Wiretap II Channel Models: Achievable Rates and Cost of Strong Secrecy
In this paper, new two-user multiple access wiretap channel models are studied. First, the multiple access wiretap channel II with a discrete memoryless main channel, under three different wiretapping scenarios, is introduced. The wiretapper, as in the classical wiretap channel II model, chooses a fixedlength subset of the channel uses on which she obtains noise-free observations of one of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IET Communications
دوره 11 شماره
صفحات -
تاریخ انتشار 2017