Inversion of a behavioral response in bacterial chemotaxis: explanation at the molecular level.

نویسندگان

  • S Khan
  • R M Macnab
  • A L DeFranco
  • D E Koshland
چکیده

Certain cheU mutants of Salmonella show inverted chemotactic behavior, being repelled by attractants and attracted by repellents. Such a dramatic change in behavioral pattern would seem at first glance to require drastic and complex alterations in the sensory processing system. In fact, the behavior can be explained by a simple shift in the level of a response regulator and the subtle effects of this shift on flagellar function. Flagella can exist in either a left-handed or a right-handed structure depending on applied torsion. Wild-type cells swim smoothly by counterclockwise rotation of a left-handed helical bundle and tumble when the motors briefly reverse to clockwise rotation (normal random motility). The cheU mutation causes a shift in response regulator level relative to the critical threshold value, resulting in extended clockwise operation so that the flagella are fully converted to the right-handed helical form. These cells therefore swim smoothly by clockwise rotation of a right-handed bundle and tumble when the motor briefly reverses to counterclockwise rotation (inverse random motility). Thus, tumbling is associated with brief reversals and not with a particular sense of rotation. A wild-type cell, with its steady-state response regulator level placing it initially in normal random motility, will swim smoothly on addition of attractant, whereas a cheU mutant with inverse random motility will tumble given the same stimulus. The phenomenon illustrates the profound behavioral consequences that can result from a single mutation in a key gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-8: Sperm Chemotaxis towards Progesterone,A Guiding Mechanism That May Be Used to Select The Best Spermatozoa for Assisted Reproduction

Background: Spermatozoa are able to sense an attractant molecule gradient and as a consequence, orient their movement towards the source of the attractant. This mechanism is known as sperm chemotaxis. In recent years, our laboratory contributed to the knowledge of several features of mammalian sperm chemotaxis. These include the size and physiological state of the chemotactic sperm population, ...

متن کامل

Evaluation of the Expression of NLRP1 Inflammasome in Patients with Bacterial Septicemia

Background: Septicemia is the most important cause of mortality, especially in hospitalized patients, due to the influence of the immune response by infection. NLRP1 (Nod-like receptor P1) is an intracellular receptor that recognizes microbial-dependent molecular patterns. The main intracellular mechanism of anti-septicemia is still being investigated. The purpose of this study was to evaluate ...

متن کامل

P 12: Study of the Association between Serum Level of Cystatin C and Behavioral Symptoms of 6-Hydroxydopamine – Induced Parkinsonism in Rat

Introduction: Parkinson’s disease (PD) is the second most neurodegenerative disorder which is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Clinical symptoms do not appear until approximately 70% of dopaminergic neurons and 80% of the striatal dopaminergic terminals have been lost. Thus, detecting nonclinical factors such as detecting b...

متن کامل

Relationship between cellular response and behavioral variability in bacterial chemotaxis.

Over the last decades, bacterial chemotaxis in Escherichia coli has emerged as a canonical system for the study of signal transduction. A remarkable feature of this system is the coexistence of a robust adaptive behavior observed at the population level with a large fluctuating behavior in single cells [Korobkova E, Emonet T, Vilar JMG, Shimizu TS, Cluzel P (2004) Nature 428:574-578]. Using a u...

متن کامل

Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis.

The chemotactic response of bacteria is mediated by complexes containing two molecules each of a transmembrane receptor and the intracellular signaling proteins CheA and CheW. Mutants in which one or the other of the proteins of this complex are absent, inactive, or expressed at elevated amounts show altered chemotactic behavior and the phenotypes are difficult to interpret for some overexpress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 75 9  شماره 

صفحات  -

تاریخ انتشار 1978