Subcritical U-bootstrap Percolation Models Have Non-trivial Phase Transitions

نویسنده

  • PAUL BALISTER
چکیده

We prove that there exist natural generalizations of the classical bootstrap percolation model on Z that have non-trivial critical probabilities, and moreover we characterize all homogeneous, local, monotone models with this property. Van Enter [28] (in the case d = r = 2) and Schonmann [25] (for all d > r > 2) proved that r-neighbour bootstrap percolation models have trivial critical probabilities on Z for every choice of the parameters d > r > 2: that is, an initial set of density p almost surely percolates Z for every p > 0. These results effectively ended the study of bootstrap percolation on infinite lattices. Recently Bollobás, Smith and Uzzell [8] introduced a broad class of percolation models called U-bootstrap percolation, which includes r-neighbour bootstrap percolation as a special case. They divided two-dimensional U-bootstrap percolation models into three classes – subcritical, critical and supercritical – and they proved that, like classical 2-neighbour bootstrap percolation, critical and supercritical U-bootstrap percolation models have trivial critical probabilities on Z. They left open the question as to what happens in the case of subcritical families. In this paper we answer that question: we show that every subcritical U-bootstrap percolation model has a non-trivial critical probability on Z. This is new except for a certain ‘degenerate’ subclass of symmetric models that can be coupled from below with oriented site percolation. Our results re-open the study of critical probabilities in bootstrap percolation on infinite lattices, and they allow one to ask many questions of subcritical bootstrap percolation models that are typically asked of site or bond percolation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

Spiral Model: a cellular automaton with a discontinuous glass transition

We introduce a new class of two-dimensional cellular automata with a bootstrap percolation-like dynamics. Each site can be either empty or occupied by a single particle and the dynamics follows a deterministic updating rule at discrete times which allows only emptying sites. We prove that the threshold density ρc for convergence to a completely empty configuration is non trivial, 0 < ρc < 1, co...

متن کامل

ساختار فاز میدانهای پیمانه‌ای شبکه‌ای دو بعدی U(N) با کنش مختلط

  We study the phase structure of two dimensional pure lattice gauge theory with a Chern term. The symmetry groups are non-Abelian, finite and disconnected sub-groups of SU(3). Since the action is imaginary it introduces a rich phase structure compared to the originally trivial two dimensional pure gauge theory. The Z3 group is the center of these groups and the result shows that if we use one ...

متن کامل

Tricritical directed percolation

We consider a modification of the contact process incorporating higher-order reaction terms. The original contact process exhibits a non-equilibrium phase transition belonging to the universality class of directed percolation. The incorporated higher-order reaction terms lead to a non-trivial phase diagram. In particular, a line of continuous phase transitions is separated by a tricritical poin...

متن کامل

Inhomogeneous nucleation in quark hadron phase transition

The effect of subcritical hadron bubbles on a first-order quark-hadron phase transition is studied. These subcritical hadron bubbles created due to thermal fluctuations introduce a finite amount of phase mixing (quark phase mixed with hadron phase) even at and above the critical temperature. For sufficiently strong transitions, as is expected to be the case for the quark-hadron transition, we s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014