Molecular and Cellular Pathobiology Repair versus Checkpoint Functions of BRCA1 Are Differentially Regulated by Site of Chromatin Binding

نویسندگان

  • Michael Goldstein
  • Michael B. Kastan
چکیده

The product of the Brca1 tumor-suppressor gene is involved in multiple aspects of the cellular DNA damage response (DDR), including activation of cell-cycle arrests and DNA double-stranded break (DSB) repair by homologous recombination. Prior reports demonstrated that BRCA1 recruitment to areas of DNA breakage depended on RAP80 and the RNF8/ RNF168 E3 ubiquitin ligases. Here, we extend these findings by showing that RAP80 is only required for the binding of BRCA1 to regions flanking the DSB, whereas BRCA1 binding directly to DNA breaks requires Nijmegen breakage syndrome 1 (NBS1). These differential recruitment mechanisms differentially affect BRCA1 functions: (i) RAP80-dependent recruitment of BRCA1 to chromatin flanking DNA breaks is required for BRCA1 phosphorylation at serine 1387 and 1423 by ATM and, consequently, for the activation of S and G2 checkpoints; and (ii) BRCA1 interaction with NBS1 upon DSB induction results in an NBS1-dependent recruitment of BRCA1 directly to the DNA break and is required for nonhomologous endjoining repair. Together, these findings illustrate that spatially distinct fractions of BRCA1 exist at the DSB site, which are recruited by different mechanisms and execute different functions in the DDR. Cancer Res; 75(13); 2699–707. 2015 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repair versus Checkpoint Functions of BRCA1 Are Differentially Regulated by Site of Chromatin Binding.

The product of the Brca1 tumor-suppressor gene is involved in multiple aspects of the cellular DNA damage response (DDR), including activation of cell-cycle arrests and DNA double-stranded break (DSB) repair by homologous recombination. Prior reports demonstrated that BRCA1 recruitment to areas of DNA breakage depended on RAP80 and the RNF8/RNF168 E3 ubiquitin ligases. Here, we extend these fin...

متن کامل

Molecular and Cellular Pathobiology FOXP3 Regulates Sensitivity of Cancer Cells to Irradiation by Transcriptional Repression of BRCA1

FOXP3 is an X-linked tumor suppressor gene and amaster regulator in T regulatory cell function. This gene has been found to be mutated frequently in breast and prostate cancers and to inhibit tumor cell growth, but its functional significance in DNA repair has not been studied. We found that FOXP3 silencing stimulates homologous recombination-mediated DNA repair and also repair of g-irradiation...

متن کامل

IN SILICO INVESTIGATION OF THE EFFECT OF LYCOPENE ON THE EXPRESSION OF BRCA1 AND BRCA2 INHIBITOR GENES IN PROSTATE CANCER

Background & Aims: Cancer is a genetic disease that results from mutations in genes that control cell activities. Prostate cancer is one of the most common types of cancers in men. Surgery, radiation therapy, hormone therapy, and chemotherapy are used to treat this disease. These treatments have numerous side effects after treatment, including impotence along with the high cost of treatment. In...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

CBP and p300 Histone Acetyltransferases Contribute to Homologous Recombination by Transcriptionally Activating the BRCA1 and RAD51 Genes

Histone acetylation at DNA double-strand break (DSB) sites by CBP and p300 histone acetyltransferases (HATs) is critical for the recruitment of DSB repair proteins to chromatin. Here, we show that CBP and p300 HATs also function in DSB repair by transcriptionally activating the BRCA1 and RAD51 genes, which are involved in homologous recombination (HR), a major DSB repair system. siRNA-mediated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015