Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver.

نویسندگان

  • Lars P Klieverik
  • Sarah F Janssen
  • Annelieke van Riel
  • Ewout Foppen
  • Peter H Bisschop
  • Mireille J Serlie
  • Anita Boelen
  • Mariëtte T Ackermans
  • Hans P Sauerwein
  • Eric Fliers
  • Andries Kalsbeek
چکیده

Thyrotoxicosis increases endogenous glucose production (EGP) and induces hepatic insulin resistance. We have recently shown that these alterations can be modulated by selective hepatic sympathetic and parasympathetic denervation, pointing to neurally mediated effects of thyroid hormone on glucose metabolism. Here, we investigated the effects of central triiodothyronine (T(3)) administration on EGP. We used stable isotope dilution to measure EGP before and after i.c.v. bolus infusion of T(3) or vehicle in euthyroid rats. To study the role of hypothalamic preautonomic neurons, bilateral T(3) microdialysis in the paraventricular nucleus (PVN) was performed for 2 h. Finally, we combined T(3) microdialysis in the PVN with selective hepatic sympathetic denervation to delineate the involvement of the sympathetic nervous system in the observed metabolic alterations. T(3) microdialysis in the PVN increased EGP by 11 +/- 4% (P = 0.020), while EGP decreased by 5 +/- 8% (ns) in vehicle-treated rats (T(3) vs. Veh, P = 0.030). Plasma glucose increased by 29 +/- 5% (P = 0.0001) after T(3) microdialysis versus 8 +/- 3% in vehicle-treated rats (T(3) vs. Veh, P = 0.003). Similar effects were observed after i.c.v. T(3) administration. Effects of PVN T(3) microdialysis were independent of plasma T(3), insulin, glucagon, and corticosterone. However, selective hepatic sympathectomy completely prevented the effect of T(3) microdialysis on EGP. We conclude that stimulation of T(3)-sensitive neurons in the PVN of euthyroid rats increases EGP via sympathetic projections to the liver, independently of circulating glucoregulatory hormones. This represents a unique central pathway for modulation of hepatic glucose metabolism by thyroid hormone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CRFR1 in AgRP Neurons Modulates Sympathetic Nervous System Activity to Adapt to Cold Stress and Fasting

Signaling by the corticotropin-releasing factor receptor type 1 (CRFR1) plays an important role in mediating the autonomic response to stressful challenges. Multiple hypothalamic nuclei regulate sympathetic outflow. Although CRFR1 is highly expressed in the arcuate nucleus (Arc) of the hypothalamus, the identity of these neurons and the role of CRFR1 here are presently unknown. Our studies show...

متن کامل

Cardiovascular responses produced by resistin injected into paraventricular nucleus mediated by the glutamatergic and CRFergic transmissions within rostral ventrolateral medulla

Objective(s): Resistin, as a 12.5 kDa cysteine-rich polypeptide, is expressed in hypothalamus and regulates sympathetic nerve activity. It is associated with obesity, metabolic syndrome and cardiovascular diseases. In this study, we investigated the neural pathway of cardiovascular responses induced by injection of resistin into paraventricular nucleus (PVN) with rostr...

متن کامل

Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver.

Daily peak plasma glucose concentrations are attained shortly before awakening. Previous experiments indicated an important role for the biological clock, located in the suprachiasmatic nuclei (SCN), in the genesis of this anticipatory rise in plasma glucose concentrations by controlling hepatic glucose production. Here, we show that stimulation of NMDA receptors, or blockade of GABA receptors ...

متن کامل

Intrahypothalamic Estradiol Regulates Glucose Metabolism via the Sympathetic Nervous System in Female Rats

Long-term reduced hypothalamic estrogen signaling leads to increased food intake and decreased locomotor activity and energy expenditure, and ultimately results in obesity and insulin resistance. In the current study, we aimed to determine the acute obesity-independent effects of hypothalamic estrogen signaling on glucose metabolism. We studied endogenous glucose production (EGP) and insulin se...

متن کامل

Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Glucose Production via the Hepatic Sympathetic Innervation in Rats

OBJECTIVE The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 14  شماره 

صفحات  -

تاریخ انتشار 2009