Simultaneous prediction of protein secondary structure and transmembrane spans.

نویسندگان

  • Julia Koehler Leman
  • Ralf Mueller
  • Mert Karakas
  • Nils Woetzel
  • Jens Meiler
چکیده

Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α-helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three-state secondary structure prediction, and 94.8% for three-state transmembrane span prediction. These accuracies are comparable to state-of-the-art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Prediction of Secondary Structure of Citrus Viroids Reported from Southern Iran

Abstract Viroids are smallest, single-stranded, circular, highly structured plant pathogenic RNAs that do not code for any protein. Viroids belong to two families, the Avsunviroidae and the Pospiviroidae. Members of the Pospiviroidae family adopt a rod-like secondary structure. In this study the most stable secondary structures of citrus viroid variants that reported from Fars province wer...

متن کامل

A web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence.

We designed a web-based program, WHAT, which uses a sliding window to determine and plot the hydropathy, amphipathicity, secondary structure and transmembrane topology along the length of any protein sequence. This method is based on programs designed by us for hydropathy and amphipathicity but on JNET and MEMSAT for secondary structure and transmembrane topology predictions, respectively. It h...

متن کامل

Simultaneous Alignment and Folding of Protein Sequences

Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-A...

متن کامل

Physicochemical Position-Dependent Properties in the Protein Secondary Structures

Background: Establishing theories for designing arbitrary protein structures is complicated and depends on understanding the principles for protein folding, which is affected by applied features. Computer algorithms can reach high precision and stability in computationally designing enzymes and binders by applying informative features obtained from natural structures. Methods: In this study, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 81 7  شماره 

صفحات  -

تاریخ انتشار 2013