Fe b 20 06 PERIODIC POINT DATA DETECTS SUBDYNAMICS IN ENTROPY RANK ONE

نویسنده

  • THOMAS WARD
چکیده

A framework for understanding the geometry of continuous actions of Z was developed by Boyle and Lind using the notion of expansive behavior along lower-dimensional subspaces. For algebraic Z-actions of entropy rank one, the expansive subdynamics is readily described in terms of Lyapunov exponents. Here we show that periodic point counts for elements of an entropy rank one action determine the expansive subdynamics. Moreover, the finer structure of the non-expansive set is visible in the topological and smooth structure of a set of functions associated to the periodic point data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Point Data Detects Subdynamics in Entropy Rank One

A framework for understanding the geometry of continuous actions of Z was developed by Boyle and Lind using the notion of expansive behavior along lower-dimensional subspaces. For algebraic Z-actions of entropy rank one, the expansive subdynamics is readily described in terms of Lyapunov exponents. Here we show that periodic point counts for elements of an entropy rank one action determine the ...

متن کامل

Se p 20 06 UNIFORM PERIODIC POINT GROWTH IN ENTROPY RANK ONE RICHARD

We show that algebraic dynamical systems with entropy rank one have uniformly exponentially many periodic points in all directions.

متن کامل

Classification of Sofic Projective Subdynamics of Multidimensional Shifts of Finite Type

Motivated by Hochman’s notion of subdynamics of a Z subshift [8], we define and examine the projective subdynamics of Z shifts of finite type (SFTs) where we restrict not only the action but also the phase space. We show that any Z sofic shift of positive entropy is the projective subdynamics of a Z2 (Z) SFT, and that there is a simple condition characterizing the class of zero-entropy Z sofic ...

متن کامل

Uniform Periodic Point Growth in Entropy Rank One

We show that algebraic dynamical systems with entropy rank one have uniformly exponentially many periodic points in all directions.

متن کامل

ar X iv : m at h - ph / 0 40 40 06 v 3 1 7 Fe b 20 05 Pure point spectrum for the time - evolution of a periodically rank - N kicked Hamiltonian

We find the conditions under which the spectrum of the unitary timeevolution operator for a periodically rank-N kicked system remains pure point. This stability result allows one to analyse the onset of, or lack of chaos in this class of quantum mechanical systems, extending the results for rank-1 systems produced by Combescure and others. This work includes a number of unitary theorems equival...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008