Modular Counting of Rational Points over Finite Fields

نویسنده

  • Daqing Wan
چکیده

Let Fq be the finite field of q elements, where q = ph. Let f(x) be a polynomial over Fq in n variables with m non-zero terms. Let N(f) denote the number of solutions of f(x) = 0 with coordinates in Fq. In this paper, we give a deterministic algorithm which computes the reduction of N(f) modulo pb in O(n(8m)(h+b)p) bit operations. This is singly exponential in each of the parameters {h, b, p}, answering affirmatively an open problem proposed in [5].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Rational Points on Drinfeld Modular Varieties over Finite Fields

Drinfeld and Vladut proved that Drinfeld modular curves have many Fq2 -rational points compared to their genera. We propose a conjectural generalization of this result to higher dimensional Drinfeld modular varieties, and prove a theorem giving some evidence for the conjecture.

متن کامل

Generators of Finite Fields with Powers of Trace Zero and Cyclotomic Function Fields

Using the relation between the problem of counting irreducible polynomials over finite fields with some prescribed coefficients to the problem of counting rational points on curves over finite fields whose function fields are subfields of cyclotomic function fields, we count the number of generators of finite fields with powers of trace zero up to some point, answering a question of Z. Reichste...

متن کامل

Counting rational points of quiver moduli

It is shown that rational points over finite fields of moduli spaces of stable quiver representations are counted by polynomials with integer coefficients. These polynomials are constructed recursively using an identity in the Hall algebra of a quiver.

متن کامل

Rational Points and Coxeter Group Actions on the Cohomology of Toric Varieties

We derive a simple formula for the action of a finite crystallographic Coxeter group on the cohomology of its associated complex toric variety, using the method of counting rational points over finite fields, and the Hodge structure of the cohomology. Various applications are given, including the determination of the graded multiplicity of the reflection representation.

متن کامل

Counting rational points on ruled varieties over function fields

Let K be the function field of an algebraic curve C defined over a finite field Fq. Let V ⊂ PK be a projective variety which is a union of lines. We prove a general result computing the number of rational points of bounded height on V/K. We first compute the number of rational points on a general line defined over K, and then sum over the lines covering V . Mathematics Subject Classification: 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008