Colonization and Maize Growth Promotion Induced by Phosphate Solubilizing Bacterial Isolates
نویسندگان
چکیده
Phosphorus (P) limits the production of maize, one of the major food crops in China. Phosphate-solubilizing bacteria (PSB) have the capacity to solubilize phosphate complexes into plant absorbable and utilizable forms by the process of acidification, chelation, and exchange reactions. In this study, six bacteria, including one Paenibacillus sp. B1 strain, four Pseudomonas sp. strains (B10, B14, SX1, and SX2) and one Sphingobium sp. SX14 strain, were those isolated from the maize rhizosphere and identified based on their 16S rRNA sequences. All strains could solubilize inorganic P (Ca₃(PO₄)₂, FePO₄ and AlPO₄), and only B1 and B10 organic P (lecithin). All strains, except of SX1, produced IAA, and SX14 and B1 showed the highest level. B1 incited the highest increase in root length and the second increase in shoot and total dry weight, shoot length, and total P and nitrogen (N), along with increased root length. In addition, by confocal laser scanning microscopy (CLSM), we found that green fluorescent protein (GFP)-labeled B1 mainly colonized root surfaces and in epidermal and cortical tissue. Importantly, B1 can survive through forming spores under adverse conditions and prolong quality guarantee period of bio-fertilizer. Therefore, it can act as a good substitute for bio-fertilizer to promote agricultural sustainability.
منابع مشابه
Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates
The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting t...
متن کاملGrowth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna.
Five bacterial strains with phosphate-solubilizing ability and other plant growth promoting traits increased the plant biomass (20-40%) by paper towel method. Glasshouse and field experiments were conducted using two efficient strains Serratia marcescens EB 67 and Pseudomonas sp. CDB 35. Increase in plant biomass (dry weight) was 99% with EB 67 and 94% with CDB 35 under glasshouse conditions. I...
متن کاملIsolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh.
A total of 30 bacteria were isolated from the rhizoplane of rice cv. BR29 cultivated in Mymensingh, Bangladesh and from the seedlings obtained from surface-sterilized seeds of BR29. Upon screening, 6 isolates showed varying levels of phosphate solubilizing activity in both agar plate and broth assays using National Botanical Research Institute's phosphate medium. The bacterial isolates were ide...
متن کاملIsolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion.
Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP...
متن کاملScreening and identification of Iranian native phosphate solubilizing bacteria and investigation of their genetic diversity using RAPD markers
Phosphorus, the most essential nutrient for plants, becomes quickly unavailable for the plants in the soil. Phosphate solubilizing bacteria (PSB( can play an important role in providing Phosphorus for plants. In this study, the PSBs were screened from plant rhizosphere by Pikovskaya method. Then, the growth rate and phosphate solubilizing ability of 9 superior strains were measured at different...
متن کامل