A Tutorial Dialogue System for Real-Time Evaluation of Unsupervised Dialogue Act Classifiers: Exploring System Outcomes

نویسندگان

  • Aysu Ezen-Can
  • Kristy Elizabeth Boyer
چکیده

Dialogue act classification is an important step in understanding students’ utterances within tutorial dialogue systems. Machinelearned models of dialogue act classification hold great promise, and among these, unsupervised dialogue act classifiers have the great benefit of eliminating the human dialogue act annotation effort required to label corpora. In contrast to traditional evaluation approaches which judge unsupervised dialogue act classifiers by accuracy on manual labels, we present results of a study to evaluate the performance of these models with respect to their performance within end-to-end system evaluation. We compare two versions of the tutorial dialogue system for introductory computer science: one that relies on a supervised dialogue act classifier and one that depends on an unsupervised dialogue act classifier. A study with 51 students shows that both versions of the system achieve similar learning gains and user satisfaction. Additionally, we show that some incoming student characteristics are highly correlated with students’ perceptions of their experience during tutoring. This first end-to-end evaluation of an unsupervised dialogue act classifier within a tutorial dialogue system serves as a step toward acquiring tutorial dialogue management models in a fully automated, scalable way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-Context Evaluation of Unsupervised Dialogue Act Models for Tutorial Dialogue

Unsupervised dialogue act modeling holds great promise for decreasing the development time to build dialogue systems. Work to date has utilized manual annotation or a synthetic task to evaluate unsupervised dialogue act models, but each of these evaluation approaches has substantial limitations. This paper presents an incontext evaluation framework for an unsupervised dialogue act model within ...

متن کامل

Unsupervised Classification of Student Dialogue Acts with Query-Likelihood Clustering

Dialogue acts model the intent underlying dialogue moves. In natural language tutorial dialogue, student dialogue moves hold important information about knowledge and goals, and are therefore an integral part of providing adaptive tutoring. Automatically classifying these dialogue acts is a challenging task, traditionally addressed with supervised classification techniques requiring substantial...

متن کامل

On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data

The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...

متن کامل

On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data

The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...

متن کامل

Understanding Student Language: An Unsupervised Dialogue Act Classification Approach

Within the landscape of educational data, textual natural language is an increasingly vast source of learning-centered interactions. In natural language dialogue, student contributions hold important information about knowledge and goals. Automatically modeling the dialogue act of these student utterances is crucial for scaling natural language understanding of educational dialogues. Automatic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015