Stability Analysis for Stochastic Markovian Jumping Neural Networks with Leakage Delay
نویسندگان
چکیده
Abstract: The stability problem for a class of stochastic neural networks with Markovian jump parameters and leakage delay is addressed in this study. The sufficient condition to ensure an exponentially stable stochastic neural networks system is presented and proven with Lyapunov functional theory, stochastic stability technique and linear matrix inequality method. The effect of leakage delay on the stability of the neural networks system is discussed and numerical examples are provided to show the correctness and effectiveness of the research results .
منابع مشابه
Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملStability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays
In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimizatio...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملExponential stability of Markovian jumping stochastic Cohen-Grossberg neural networks with mode-dependent probabilistic time-varying delays and impulses
This paper deals with robust exponential stability of Markovian jumping stochastic Cohen–Grossberg neural networks (MJSCGNNs) with mode-dependent probabilistic time-varying delays, continuously distributed delays and impulsive perturbations. By construction of novel Lyapunov–Krasovskii functional having the triple integral terms, the double integral terms having the positive definite matrices d...
متن کاملOn Complex Artificial Higher Order Neural Networks: Dealing with Stochasticity, Jumps and Delays
AbstrAct This chapter deals with the analysis problem of the global exponential stability for a general class of stochastic artificial higher order neural networks with multiple mixed time delays and Markovian jumping parameters. The mixed time delays under consideration comprise both the discrete time-varying delays and the distributed time-delays. The main purpose of this chapter is to establ...
متن کامل