An online active set strategy to overcome the limitations of explicit MPC
نویسندگان
چکیده
Nearly all algorithms for linear model predictive control (MPC) either rely on the solution of convex quadratic programs (QPs) in real time, or on an explicit precalculation of this solution for all possible problem instances. In this paper, we present an online active set strategy for the fast solution of parametric QPs arising in MPC. This strategy exploits solution information of the previous QP under the assumption that the active set does not change much from one QP to the next. Furthermore, we present a modification where the CPU time is limited in order to make it suitable for strict real-time applications. Its performance is demonstrated with a challenging test example comprising 240 variables and 1191 inequalities, which depends on 57 parameters and is prohibitive for explicit MPC approaches. In this example, our strategy allows CPU times of well below 100ms per QP and was about one order of magnitude faster than a standard active set QP solver. Copyright # 2007 John Wiley & Sons, Ltd.
منابع مشابه
Designing a novel structure of explicit model predictive control with application in a buck converter system
This paper proposes a novel structure of model predictive control algorithm for piecewise affine systems as a particular class of hybrid systems. Due to the time consuming and computational complexity of online optimization problem in MPC algorithm, the explicit form of MPC which is called Explicit MPC (EMPC) is applied in order to control of buck converter. Since the EMPC solves the optimizati...
متن کاملModel Predictive Control of Distributed Energy Resources with Predictive Set-Points for Grid-Connected Operation
This paper proposes an MPC - based (model predictive control) scheme to control active and reactive powers of DERs (distributed energy resources) in a grid - connected mode (either through a bus with its associated loads as a PCC (point of common coupling) or an MG (micro - grid)). DER may be a DG (distributed generation) or an ESS (energy storage system). In the proposed scheme, the set - poin...
متن کاملApproximate Explicit MPC and Closed-loop Stability Analysis based on PWA Lyapunov Functions
Model Predictive Control (MPC) is the de facto standard in advanced industrial automation systems. There are two main formulations of the MPC algorithm: an implicit one and an explicit MPC one. The first requires an optimization problem to be solved on-line, which is the main limitation when dealing with hard real-time applications. As the implicit MPC algorithm cannot be guaranteed in terms of...
متن کاملExplicit MPC with output feedback using self-optimizing control
Model predictive control (MPC) is a favored method for handling constrained linear control problems. Normally, the MPC optimization problem is solved on-line, but in ‘explicit MPC’ an explicit precomputed feedback law is used for each region of active constraints (Bemporad et al., 2002). In this paper we make a link between this and the ‘self-optimizing control’ idea of finding simple policies ...
متن کاملAdaptive Tuning of Model Predictive Control Parameters based on Analytical Results
In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...
متن کامل