A Generic Classifier-Ensemble Approach for Biomedical Named Entity Recognition
نویسندگان
چکیده
In named entity recognition (NER) for biomedical literature, approaches based on combined classifiers have demonstrated great performance improvement compared to a single (best) classifier. This is mainly owed to sufficient level of diversity exhibited among classifiers, which is a selective property of classifier set. Given a large number of classifiers, how to select different classifiers to put into a classifier-ensemble is a crucial issue of multiple classifier-ensemble design. With this observation in mind, we proposed a generic genetic classifier-ensemble method for the classifier selection in biomedical NER. Various diversity measures and majority voting are considered, and disjoint feature subsets are selected to construct individual classifiers. A basic type of individual classifier – Support Vector Machine (SVM) classifier is adopted as SVM-classifier committee. A multi-objective Genetic algorithm (GA) is employed as the classifier selector to facilitate the ensemble classifier to improve the overall sample classification accuracy. The proposed approach is tested on the benchmark dataset – GENIA version 3.02 corpus, and compared with both individual best SVM classifier and SVM-classifier ensemble algorithm as well as other machine learning methods such as CRF, HMM and MEMM. The results show that the proposed approach outperforms other classification algorithms and can be a useful method for the biomedical NER problem.
منابع مشابه
Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملBiomedical Named Entity Recognition Based on Classifiers Ensemble
In this paper, we present classifiers ensemble approaches for biomedical named entity recognition. Generalized Winnow, Conditional Random Fields, Support Vector Machine, and Maximum Entropy are combined through three different strategies. We demonstrate the effectiveness of classifiers ensemble strategies and compare its performances with standalone classifier systems. In the experiments on the...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملMultiobjective Optimization for Biomedical Named Entity Recognition and Classification
Named Entity Recognition and Classification (NERC) is one of the most fundamental and important tasks in biomedical information extraction. Biomedical named entities (NEs) include mentions of proteins, genes, DNA, RNA etc. which, in general, have complex structures and are difficult to recognize. We have developed a large number of features for identifying NEs from biomedical texts. Two robust ...
متن کامل