Comparison of Land-cover Classification Methods in the Brazilian Amazon Basin
نویسنده
چکیده
Numerous classifiers have been developed and different classifiers have their own characteristics. Controversial results often occurred depending on the landscape complexity of the study area and the data used. Therefore, this paper aims to find a suitable classifier for the tropical land cover classification. Five classifiers – minimum distance classifier (MDC), maximum likelihood classifier (MLC), fisher linear discriminant (FLD), extraction and classification of homogeneous objects (ECHO), and linear spectral mixture analysis (LSMA) – were tested using Landsat Thematic Mapper (TM) data in the Amazon basin using the same training sample data sets. Seven land cover classes – mature forest, advanced succession forest, initial secondary succession forest, pasture, agricultural lands, bare lands, and water – were classified. Overall classification accuracy and kappa analysis were calculated. The results indicate that LSMA and ECHO classifiers provided better classification accuracies than the MDC, MLC, and FLD in the moist tropical region. The overall accuracy of LSMA approach reaches 86% associated with 0.82 kappa coefficient.
منابع مشابه
Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملClassification of Land Use and Land Cover in the Brazilian Amazon using Fuzzy Multilayer Perceptrons
Here the authors propose the use of Fuzzy Multilayer Perceptrons for classification of land use and land cover patterns in the Brazilian Amazon, using time series of vegetation index, taken from NASA’s MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. In addition to the traditional Multilayer Perceptron (MLP), three fuzzy implementations were investigated. These methods were applied...
متن کاملA Comparative Study of Terra ASTER, Landsat TM, and SPOT HRG data For Land Cover Classification in the Brazilian Amazon
Landsat Thematic Mapper (TM) data have been extensively used for land cover classification, but Terra ASTER and SPOT High Resolution Geometric (HRG) data applications are just beginning. This paper compares the capabilities of TM, ASTER, and HRG in land cover classification in the Amazon basin. Maximum likelihood classification was used for selected multi-sensor image classification. This resea...
متن کاملEvaluation of Land Cover Changes Ysing Remote Sensing Technique (Case study: Hableh Rood Subwatershed of Shahrabad Basin)
The growing population and increasing socio-economic necessities creates a pressure on land use/land cover. Nowadays, land use change detection using remote sensing data provides quantitative and timely information for management and evaluation of natural resources. This study investigates the land use changes in part of Hableh Rood Watershed of Iran using Landsat 7 and 8 (Sensor ETM+ and OLI) ...
متن کاملLand use/cover classification in the Brazilian Amazon using satellite images.
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon fo...
متن کامل