Biapenem Inactivation by B2 Metallo β-Lactamases: Energy Landscape of the Post-Hydrolysis Reactions

نویسنده

  • Domenico L. Gatti
چکیده

BACKGROUND The first line of defense by bacteria against β-lactam antibiotics is the expression of β-lactamases, which cleave the amide bond of the β-lactam ring. In the reaction of biapenem inactivation by B2 metallo β-lactamases (MβLs), after the β-lactam ring is opened, the carboxyl group generated by the hydrolytic process and the hydroxyethyl group (common to all carbapenems) rotate around the C5-C6 bond, assuming a new position that allows a proton transfer from the hydroxyethyl group to C2, and a nucleophilic attack on C3 by the oxygen atom of the same side-chain. This process leads to the formation of a bicyclic compound, as originally observed in the X-ray structure of the metallo β-lactamase CphA in complex with product. METHODOLOGY/PRINCIPAL FINDINGS QM/MM and metadynamics simulations of the post-hydrolysis steps in solution and in the enzyme reveal that while the rotation of the hydroxyethyl group can occur in solution or in the enzyme active site, formation of the bicyclic compound occurs primarily in solution, after which the final product binds back to the enzyme. The calculations also suggest that the rotation and cyclization steps can occur at a rate comparable to that observed experimentally for the enzymatic inactivation of biapenem only if the hydrolysis reaction leaves the N4 nitrogen of the β-lactam ring unprotonated. CONCLUSIONS/SIGNIFICANCE The calculations support the existence of a common mechanism (in which ionized N4 is the leaving group) for carbapenems hydrolysis in all MβLs, and suggest a possible revision of mechanisms for B2 MβLs in which the cleavage of the β-lactam ring is associated with or immediately followed by protonation of N4. The study also indicates that the bicyclic derivative of biapenem has significant affinity for B2 MβLs, and that it may be possible to obtain clinically effective inhibitors of these enzymes by modification of this lead compound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biapenem Inactivation by B2 Metallo β-Lactamases: Energy Landscape of the Hydrolysis Reaction

BACKGROUND A general mechanism has been proposed for metallo β-lactamases (MβLs), in which deprotonation of a water molecule near the Zn ion(s) results in the formation of a hydroxide ion that attacks the carbonyl oxygen of the β-lactam ring. However, because of the absence of X-ray structures that show the exact position of the antibiotic in the reactant state (RS) it has been difficult to obt...

متن کامل

Identification of New Natural CphA Metallo-β-Lactamases CphA4 and CphA5 in Aeromonas veronii and Aeromonas hydrophila Isolates from Municipal Sewage in Central Italy.

Two new natural CphA metallo-β-lactamases, the CphA4 and CphA5 enzymes, were identified in water samples from municipal sewage in central Italy. Compared to CphA, the CphA4 and CphA5 enzymes showed numerous point mutations. These enzymes have a narrow spectrum of substrates focused on carbapenems only. CphA5 showed kcat values about 40-, 12-, and 97-fold higher than those observed for CphA4 ver...

متن کامل

Interaction of Avibactam with Class B Metallo-β-Lactamases

β-Lactamases are the most important mechanisms of resistance to the β-lactam antibacterials. There are two mechanistic classes of β-lactamases: the serine β-lactamases (SBLs) and the zinc-dependent metallo-β-lactamases (MBLs). Avibactam, the first clinically useful non-β-lactam β-lactamase inhibitor, is a broad-spectrum SBL inhibitor, which is used in combination with a cephalosporin antibiotic...

متن کامل

Interactions of biapenem with active-site serine and metallo-beta-lactamases.

Biapenem, formerly LJC 10,627 or L-627, a carbapenem antibiotic, was studied in its interactions with 12 beta-lactamases belonging to the four molecular classes proposed by R. P. Ambler (Philos. Trans. R. Soc. Lond. Biol. Sci. 289:321-331, 1980). Kinetic parameters were determined. Biapenem was readily inactivated by metallo-beta-lactamases but behaved as a transient inhibitor of the active-sit...

متن کامل

Quantum Mechanical Approach for the Catalytic Mechanism of Dinuclear Zinc Metallo-β-lactamase by Penicillin and Cephalexin: Kinetic and Thermodynamic Points of View

Metallo-β-lactamases (MβL) catalyzing the hydrolytic cleavage of the four-membered β-lactam ring in broad spectrum of antibiotics and therefore inactivating the drug; However, the mechanism of these enzymes is still not well understood. Electronic structure and electronic energy of metallo-β-lactamase active center, two inhibitors of this enzyme including penicillin and cephalexin, and differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012