Stick-breaking Construction for the Indian Buffet Process

نویسندگان

  • Yee Whye Teh
  • Dilan Görür
  • Zoubin Ghahramani
چکیده

The Indian buffet process (IBP) is a Bayesian nonparametric distribution whereby objects are modelled using an unbounded number of latent features. In this paper we derive a stick-breaking representation for the IBP. Based on this new representation, we develop slice samplers for the IBP that are efficient, easy to implement and are more generally applicable than the currently available Gibbs sampler. This representation, along with the work of Thibaux and Jordan [17], also illuminates interesting theoretical connections between the IBP, Chinese restaurant processes, Beta processes and Dirichlet processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indian Buffet Processes with Power-law Behavior

The Indian buffet process (IBP) is an exchangeable distribution over binary matrices used in Bayesian nonparametric featural models. In this paper we propose a three-parameter generalization of the IBP exhibiting power-law behavior. We achieve this by generalizing the beta process (the de Finetti measure of the IBP) to the stable-beta process and deriving the IBP corresponding to it. We find in...

متن کامل

Slice sampling in nested IBP

We develop a nonparametric Bayesian method that explores the infinite space of latent features and finds the best subset in the sense of posterior probability. When the data appear in several groups, there should be different measures reflecting the differences between the groups. We formalize this as a nested Indian buffet process (nIBP) by assuming different measures according to the specific...

متن کامل

Introduction to the Dirichlet Distribution and Related Processes

This tutorial covers the Dirichlet distribution, Dirichlet process, Pólya urn (and the associated Chinese restaurant process), hierarchical Dirichlet Process, and the Indian buffet process. Apart from basic properties, we describe and contrast three methods of generating samples: stick-breaking, the Pólya urn, and drawing gamma random variables. For the Dirichlet process we first present an inf...

متن کامل

Variational Inference for the Indian Buffet Process

The Indian Buffet Process (IBP) is a nonparametric prior for latent feature models in which observations are influenced by a combination of hidden features. For example, images may be composed of several objects and sounds may consist of several notes. Latent feature models seek to infer these unobserved features from a set of observations; the IBP provides a principled prior in situations wher...

متن کامل

A Stick-Breaking Construction of the Beta Process

We present and derive a new stick-breaking construction of the beta process. The construction is closely related to a special case of the stick-breaking construction of the Dirichlet process (Sethuraman, 1994) applied to the beta distribution. We derive an inference procedure that relies on Monte Carlo integration to reduce the number of parameters to be inferred, and present results on synthet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007