Dataset Generation for Meta-Learning
نویسندگان
چکیده
Meta-learning tries to improve the learning process by using knowledge about already completed learning tasks. Therefore, features of dataset, so-called meta-features, are used to represent datasets. These meta-features are used to create a model of the learning process. In order to make this model more predictive, sufficient training samples and, thereby, sufficient datasets are required. In this paper, we present a novel data-generator that is able to create datasets with specified meta-features, e.g., it is possible to create datasets with specific mean kurtosis and skewness. The publicly available datagenerator uses a genetic approach and is able to incorporate arbitrary meta-features.
منابع مشابه
Ranking of Classifiers based on Dataset Characteristics using Active Meta Learning
Classification is a machine learning technique which is used to categorize the different input patterns into different classes. To select the best classifier for a given dataset is one of the critical issues in Classification. Using cross-validation approach, it is possible to apply candidate algorithms on a given dataset and best classifier is selected by considering various evaluation measure...
متن کاملA Study of Meta Learning for Regression
In regression applications, there is no single algorithm which performs well with all data since the performance of an algorithm depends on the dataset used. In practice, different algorithms / approaches are tried, and the best one is selected in each application. It is meaningful to ask whether there is a different way instead of running such tedious experiments. In meta learning studies, one...
متن کاملNatural Language to Structured Query Generation via Meta-Learning
In conventional supervised training, a model is trained to fit all the training examples. However, having a monolithic model may not always be the best strategy, as examples could vary widely. In this work, we explore a different learning protocol that treats each example as a unique pseudo-task, by reducing the original learning problem to a few-shot meta-learning scenario with the help of a d...
متن کاملتولید خودکار الگوهای نفوذ جدید با استفاده از طبقهبندهای تک کلاسی و روشهای یادگیری استقرایی
In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کامل