Creating Objects and Object Categories for Studying Perception and Perceptual Learning
نویسندگان
چکیده
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties. Many innovative and useful methods currently exist for creating novel objects and object categories (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.
منابع مشابه
Perceptual advantage for category-relevant perceptual dimensions: the case of shape and motion
Category learning facilitates perception along relevant stimulus dimensions, even when tested in a discrimination task that does not require categorization. While this general phenomenon has been demonstrated previously, perceptual facilitation along dimensions has been documented by measuring different specific phenomena in different studies using different kinds of objects. Across several obj...
متن کاملProbabilistic Object Learning through Attention-based Organized Perception
This paper proposes a model of probabilistic object learning in conjunction with attention-based organized perception. This model consists of the following two sub-models: the former is a model of attention-based perceptual organization of segments and the latter is a model of learning object composition of categories based on a bag of features representation of segments. In attention-based per...
متن کاملEffectiveness of a Combined Training Package on Strengthening Visual Perceptual Skills in Preschool Children
Objectives: Paper and pencil exercises are extensively used to enhance children’s visual perceptual skills, while exercises involving volumetric shapes have been neglected. The present study aimed to develop a combined training package, including volumetric shapes and paper and pencil exercises, and to investigate its effectiveness in strengthening the visual perceptual skills of preschool chil...
متن کاملLarity Perception of Novel Objects
We develop a model of perceptual similarity judgment based on re-training a deep convolution neural network (DCNN) that learns to associate different views of each 3D object to capture the notion of object persistence and continuity in our visual experience. The re-training process effectively performs distance metric learning under the object persistency constraints, to modify the view-manifol...
متن کاملCategory Learning Stretches Neural Representations in Visual Cortex.
We review recent work that shows how learning to categorize objects changes how those objects are represented in the mind and the brain. After category learning, visual perception of objects is enhanced along perceptual dimensions that were relevant to the learned categories, an effect we call dimensional modulation (DM). DM stretches object representations along category-relevant dimensions an...
متن کامل