A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment
نویسندگان
چکیده
The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing.
منابع مشابه
A LiDAR Point Cloud Generator: from a Virtual World to Autonomous Driving
3D LiDAR scanners are playing an increasingly important role in autonomous driving as they can generate depth information of the environment. However, creating large 3D LiDAR point-cloud datasets with point-level labels requires a significant amount of manual annotation. This jeopardizes the efficient development of supervised deep learning algorithms. We present a framework to rapidly create p...
متن کامل3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملA Model-Based Approach for Fast Vehicle Detection in Continuously Streamed Urban LIDAR Point Clouds
Detection of vehicles in crowded 3-D urban scenes is a challenging problem in many computer vision related research fields, such as robot perception, autonomous driving, self-localization, and mapping. In this paper we present a model-based approach to solve the recognition problem from 3-D range data. In particular, we aim to detect and recognize vehicles from continuously streamed LIDAR point...
متن کاملStreaming Progressive TIN Densification Filter for Airborne LiDAR Point Clouds Using Multi-Core Architectures
As one of the key steps in the processing of airborne light detection and ranging (LiDAR) data, filtering often consumes a huge amount of time and physical memory. Conventional sequential algorithms are often inefficient in filtering massive point clouds, due to their huge computational cost and Input/Output (I/O) bottlenecks. The progressive TIN (Triangulated Irregular Network) densification (...
متن کاملFast 3-D Urban Object Detection on Streaming Point Clouds
Efficient and fast object detection from continuously streamed 3-D point clouds has a major impact in many related research tasks, such as autonomous driving, self localization and mapping and understanding large scale environment. This paper presents a LIDAR-based framework, which provides fast detection of 3-D urban objects from point cloud sequences of a Velodyne HDL-64E terrestrial LIDAR sc...
متن کامل