Chondroitin sulfates act as extracellular gating modifiers on voltage-dependent ion channels.

نویسندگان

  • Davide Vigetti
  • Olga Andrini
  • Moira Clerici
  • Daniela Negrini
  • Alberto Passi
  • Andrea Moriondo
چکیده

BACKGROUND/AIMS Chondroitin sulfates are glycosaminoglycans bound to core proteins of proteoglycans in the extracellular matrix and perineuronal nets surrounding many types of neurones. Chondroitin 4- and chondroitin 6- sulfate can bind calcium ions with different affinities, depending on their sulfation position. Extracellular calcium plays a key role in determining the transmembrane potential sensed by voltage-operated ion channels (VOCs) by means of the "surface screening effect" theory (Gouy-Chapman-Stern theory). We wanted to test whether chondroitin sulfates at physiological concentration can effectively modulate the gating properties of VOCs. METHODS We recorded in patch-clamp experiments the shift of h and voltage-dependent calcium currents activation curves of Xenopus laevis photoreceptors perfused with chondroitin sulfate solutions in physiological extracellular calcium concentration. RESULTS We found that chondroitin 4- and 6- sulfate, with different capabilities, can shift the activation curve of h and voltage-dependent calcium channels, compatibly with the surface screening effect theory. CONCLUSION We conclude that chondroitin sulfates can alter VOCs gating by modulating the calcium concentration in the extracellular microenvironment. This phenomenon may explain why alterations in the chondroitin sulfation and abundance in the extracellular matrix are found along with altered neuronal function in pathological conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels

Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand t...

متن کامل

Voltage-gated ion channels and gating modifier toxins.

Voltage-gated sodium, calcium, and potassium channels generate electrical signals required for action potential generation and conduction and are the molecular targets for a broad range of potent neurotoxins. These channels are built on a common structural motif containing six transmembrane segments and a pore loop. Their pores are formed by the S5/S6 segments and the pore loop between them, an...

متن کامل

Inhibition of sodium channel gating by trapping the domain II voltage sensor with protoxin II.

ProTx-II, an inhibitory cysteine knot toxin from the tarantula Thrixopelma pruriens, inhibits voltage-gated sodium channels. Using the cut-open oocyte preparation for electrophysiological recording, we show here that ProTx-II impedes movement of the gating charges of the sodium channel voltage sensors and reduces maximum activation of sodium conductance. At a concentration of 1 microM, the toxi...

متن کامل

Mechanism of Ion Permeation in Skeletal Muscle Chloride Channels

Voltage-gated Cl- channels belonging to the ClC family exhibit unique properties of ion permeation and gating. We functionally probed the conduction pathway of a recombinant human skeletal muscle Cl- channel (hClC-1) expressed both in Xenopus oocytes and in a mammalian cell line by investigating block by extracellular or intracellular I- and related anions. Extracellular and intracellular I- ex...

متن کامل

Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 22 1-4  شماره 

صفحات  -

تاریخ انتشار 2008