Local Polynomial Quantile Regression With Parametric Features
نویسندگان
چکیده
We propose a new approach to conditional quantile function estimation that combines both parametric and nonparametric techniques. At each design point, a global, possibly incorrect, pilot parametric model is locally adjusted through a kernel smoothing fit. The resulting quantile regression estimator behaves like a parametric estimator when the latter is correct and converges to the nonparametric solution as the parametric start deviates from the true underlying model. We give a Bahadur-type representation of the proposed estimator from which consistency and asymptotic normality are derived under an α-mixing assumption. We also propose a practical bandwidth selector based on the plug-in principle and discuss the numerical implementation of the new estimator. Finally, we investigate the performance of the proposed method via simulations and illustrate the methodology with a data example.
منابع مشابه
Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملLocal composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression
Local polynomial regression is a useful non-parametric regression tool to explore fine data structures and has been widely used in practice. We propose a new non-parametric regression technique called local composite quantile regression smoothing to improve local polynomial regression further. Sampling properties of the estimation procedure proposed are studied. We derive the asymptotic bias, v...
متن کاملConditional Independence Specication Testing for Dependent Processes with Local Polynomial Quantile Regression
We provide straightforward new nonparametric methods for testing conditional independence using local polynomial quantile regression, allowing weakly dependent data. Inspired by Hausmans (1978) speci cation testing ideas, our methods essentially compare two collections of estimators that converge to the same limits under correct speci cation (conditional independence) and that diverge under th...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملLocal Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes.
In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity ...
متن کامل