Sensitivity of simulated CO2 concentration to regridding of global fossil fuel CO2 emissions
نویسندگان
چکیده
Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Regridding of fossil fuel CO2 emissions (FFCO2) from fine to coarse grids to enable atmospheric transport simulations can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. For example, emissions originally emanating from the land are emitted from a grid cell for which the vertical mixing reflects the roughness and/or surface energy exchange of an ocean surface. We test this potential “dynamical inconsistency” by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are as follows: (1) a commonly used method that allocates emissions to grid cells with no attempt to ensure dynamical consistency with atmospheric transport and (2) an improved method that reallocates emissions to grid cells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 TgC grid cell yr (−3.39 kgC m yr) to +30.0 TgC grid cell yr (+2.6 kgC m yr) along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding−32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential problem and ensure flux and dynamical consistency.
منابع مشابه
Sensitivity of simulated CO2 concentration to sub-annual variations in fossil fuel CO2 emissions
Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal, weekly and monthly) using a global t...
متن کاملEffects on global CO2 emissions when substituting LPG with bio-SNG as fuel in steel industry reheating furnaces: The impact of different perspectives on CO2 assessment
The iron and steel industry is the second largest user of energy in the world industrial sector and is currently highly dependent on fossil fuels and electricity. Substituting fossil fuels with renewable energy in the iron and steel industry would make an important contribution to the efforts to reduce emissions of CO2. However, different approaches to assessing CO2 emissions from biomass and e...
متن کاملSensitivity of atmospheric CO2 inversions to seasonal and interannual variations in fossil fuel emissions
[1] Estimates of fossil fuel CO2 are a critical component in atmospheric CO2 inversions. Rather than solving for this portion of the atmospheric CO2 budget, inversions typically include estimates of fossil fuel CO2 as a known quantity. However, this assumption may not be appropriate, particularly as inversions continue to solve for fluxes at reduced space and timescales. In this study, two diff...
متن کاملSensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios
In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient con...
متن کاملPolicy Update: Observing human CO<sub>2</sub> emissions
The interaction between the Earth’s carbon cycle and climate change remains a top element of uncertainty within climate change projections. In order to better understand this relationship, carbon cycle scientists use a variety of modeling and observational tools to disassemble the many fluxes and reservoirs that constitute the global carbon cycle. In addition to advancing the scientific underst...
متن کامل