Preconditioning Steady-State Navier-Stokes Equations with Random Data

نویسندگان

  • Catherine Elizabeth Powell
  • David J. Silvester
چکیده

We consider the numerical solution of the steady-state Navier–Stokes equations with uncertain data. Specifically, we treat the case of uncertain viscosity, which results in a flow with an uncertain Reynolds number. After linearization, we apply a stochastic Galerkin finite element method, combining standard inf-sup stable Taylor–Hood approximation on the spatial domain (on highly stretched grids), with orthogonal polynomials in the stochastic parameter. This yields a sequence of non-symmetric saddle-point problems with Kronecker product structure. The novel contribution of this study lies in the construction of efficient block triangular preconditioners for these discrete systems, for use with GMRES. Crucially, the preconditioners are robust with respect to the discretization and statistical parameters, and we exploit existing deterministic solvers based on the so-called Pressure Convection-Diffusion and Least-Squares Commutator approximations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations

Discretization and linearization of the steady-state Navier-Stokes equations gives rise to a nonsymmetric indeenite linear system of equations. In this paper, we introduce preconditioning techniques for such systems with the property that the eigenvalues of the preconditioned matrices are bounded independently of the mesh size used in the discretization. We connrm and supplement these analytic ...

متن کامل

Algorithms for the Euler and Navier-stokes Equations for Supercomputers

We consider the steady state Euler and Navier-Stokes equations for both compressible and incompressible flow. Methods are found for accelerating the convergence to a steady state. This acceleration is based on preconditioning the system so that it is no longer time consistent. In order that the acceleration technique be scheme independent this preconditioning is done at the differential equatio...

متن کامل

Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity

We introduce a preconditioner for the linearized Navier–Stokes equations that is effective when either the discretization mesh size or the viscosity approaches zero. For constant coefficient problems with periodic boundary conditions, we show that the preconditioning yields a system with a single eigenvalue equal to 1, so that performance is independent of both viscosity and mesh size. For othe...

متن کامل

Preconditioned residual methods for solving steady fluid flows

We develop free-derivative preconditioned residual methods for solving nonlinear steady fluid flows. The new scheme is based on a variable implicit preconditioning technique associated to the globalized spectral residual method. It is adapted for computing in a numerical way the steady state of the bi-dimensional and incompressible Navier-Stokes equations (NSE). We use finite differences for th...

متن کامل

Robust implicit preconditioning and applications

Preconditioning is the most common approach for accelerating an iterative method and consists in solving an auxilliary problem structurally close to the original one. In most situations, the art of preconditioning consists in building in a efficient way a matrix or a sequence of matrices. This explicit approach is not however always possible and there are situations in which preconditioned vers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012