Method for the construction and use of carbon fiber multibarrel electrodes for deep brain recordings in the alert animal.
نویسندگان
چکیده
Microiontophoresis of neuroactive substances during single unit recording in awake behaving animals can significantly advance our understanding of neural circuit function. Here, we present a detailed description of a method for constructing carbon fiber multibarrel electrodes suitable for delivering drugs while simultaneously recording single unit activity from deep structures, including brainstem nuclei and the cerebellum, in the awake behaving primate. We provide data that should aid in minimizing barrel resistance and the time required to fill long, thin multibarrel electrodes with solutions. We also show successful single unit recording from a variety of areas in the awake squirrel monkey central nervous system, including the vestibular nuclei, Interstitial Nucleus of Cajal, and the cerebellum. Our descriptions and data should be useful for investigators wishing to perform single unit recordings during microiontophoresis of neuroactive substances, particularly in deep structures of animals with chronically implanted recording chambers.
منابع مشابه
Manufacturing and Using Piggy-back Multibarrel Electrodes for In vivo Pharmacological Manipulations of Neural Responses
In vivo recordings from single neurons allow an investigator to examine the firing properties of neurons, for example in response to sensory stimuli. Neurons typically receive multiple excitatory and inhibitory afferent and/or efferent inputs that integrate with each other, and the ultimate measured response properties of the neuron are driven by the neural integrations of these inputs. To stud...
متن کاملEvaluation of different materials used for post construction and stress distribution in the radicular dentin using finite element method
Evaluation of different materials used for post construction and stress distribution in the radicular dentin using finite element method Dr. S. Nokar *- Dr. AS. Mostafavi ** *Assistant Professor of Prosthodontics Dept., Faculty of Dentistry, Tehran University / Medical Sciences. **Resident of Prosthodontics Dept., Faculty of Dentistry, Tehran University / Medical Sciences. Abstract Background a...
متن کاملCost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملA Diamond-Based Electrode for Detection of Neurochemicals in the Human Brain
Deep brain stimulation (DBS), a surgical technique to treat certain neurologic and psychiatric conditions, relies on pre-determined stimulation parameters in an open-loop configuration. The major advancement in DBS devices is a closed-loop system that uses neurophysiologic feedback to dynamically adjust stimulation frequency and amplitude. Stimulation-driven neurochemical release can be measure...
متن کاملFluidic Microactuation of Flexible Electrodes for Neural Recording.
Soft and conductive nanomaterials like carbon nanotubes, graphene, and nanowire scaffolds have expanded the family of ultraflexible microelectrodes that can bend and flex with the natural movement of the brain, reduce the inflammatory response, and improve the stability of long-term neural recordings. However, current methods to implant these highly flexible electrodes rely on temporary stiffen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 178 2 شماره
صفحات -
تاریخ انتشار 2009