Two Distinct Mechanisms Govern RpoS-Mediated Repression of Tick-Phase Genes during Mammalian Host Adaptation by Borrelia burgdorferi, the Lyme Disease Spirochete

نویسندگان

  • Arianna P. Grove
  • Dionysios Liveris
  • Radha Iyer
  • Mary Petzke
  • Joseph Rudman
  • Melissa J. Caimano
  • Justin D. Radolf
  • Ira Schwartz
چکیده

The alternative sigma factor RpoS plays a key role modulating gene expression in Borrelia burgdorferi, the Lyme disease spirochete, by transcribing mammalian host-phase genes and repressing σ70-dependent genes required within the arthropod vector. To identify cis regulatory elements involved in RpoS-dependent repression, we analyzed green fluorescent protein (GFP) transcriptional reporters containing portions of the upstream regions of the prototypical tick-phase genes ospAB, the glp operon, and bba74 As RpoS-mediated repression occurs only following mammalian host adaptation, strains containing the reporters were grown in dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats. Wild-type spirochetes harboring ospAB- and glp-gfp constructs containing only the minimal (-35/-10) σ70 promoter elements had significantly lower expression in DMCs relative to growth in vitro at 37°C; no reduction in expression occurred in a DMC-cultivated RpoS mutant harboring these constructs. In contrast, RpoS-mediated repression of bba74 required a stretch of DNA located between -165 and -82 relative to its transcriptional start site. Electrophoretic mobility shift assays employing extracts of DMC-cultivated B. burgdorferi produced a gel shift, whereas extracts from RpoS mutant spirochetes did not. Collectively, these data demonstrate that RpoS-mediated repression of tick-phase borrelial genes occurs by at least two distinct mechanisms. One (e.g., ospAB and the glp operon) involves primarily sequence elements near the core promoter, while the other (e.g., bba74) involves an RpoS-induced transacting repressor. Our results provide a genetic framework for further dissection of the essential "gatekeeper" role of RpoS throughout the B. burgdorferi enzootic cycle.IMPORTANCEBorrelia burgdorferi, the Lyme disease spirochete, modulates gene expression to adapt to the distinctive environments of its mammalian host and arthropod vector during its enzootic cycle. The alternative sigma factor RpoS has been referred to as a "gatekeeper" due to its central role in regulating the reciprocal expression of mammalian host- and tick-phase genes. While RpoS-dependent transcription has been studied extensively, little is known regarding the mechanism(s) of RpoS-mediated repression. We employed a combination of green fluorescent protein transcriptional reporters along with an in vivo model to define cis regulatory sequences responsible for RpoS-mediated repression of prototypical tick-phase genes. Repression of ospAB and the glp operon requires only sequences near their core promoters, whereas modulation of bba74 expression involves a putative RpoS-dependent repressor that binds upstream of the core promoter. Thus, Lyme disease spirochetes employ at least two different RpoS-dependent mechanisms to repress tick-phase genes within the mammal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Repression of Host-Associated Genes of the Lyme Disease Spirochete through Post-Transcriptional Modulation of the Alternative Sigma Factor RpoS

Borrelia burgdorferi, the agent of Lyme disease, is a vector-borne pathogen that transits between Ixodes ticks and vertebrate hosts. During the natural infectious cycle, spirochetes must globally adjust their transcriptome to survive in these dissimilar environments. One way B. burgdorferi accomplishes this is through the use of alternative sigma factors to direct transcription of specific gene...

متن کامل

Identification of Two Epitopes on the Outer Surface Protein A of the Lyme Disease Spirochete Borrelia burgdorferi

A murine IgM monoclonal antibody (MA-2C6) with κ-light chains directed against an antigenic determinant of outer surface protein A (OspA) of the Lyme disease spirochete, Borreliaburgdorferi, is produced. This antibody could bind specifically to OspA antigen of several isolates of B. burgdorferi, but not to the non-Lyme disease bacteria such as T. pallidum and B. hermsii. Antibody MA-2C6 was pur...

متن کامل

The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi

In nature, the Lyme disease spirochete Borrelia burgdorferi cycles between the unrelated environments of the Ixodes tick vector and mammalian host. In order to survive transmission between hosts, B. burgdorferi must be able to not only detect changes in its environment, but also rapidly and appropriately respond to these changes. One manner in which this obligate parasite regulates and adapts t...

متن کامل

Molecular survival strategies of the Lyme disease spirochete Borrelia burgdorferi.

Lyme disease is a tick-transmitted disease caused by the spirochete Borrelia burgdorferi. The bacterium adopts different strategies for its survival inside the immunocompetent host from the time of infection until dissemination in different parts of body tissues. The success of this spirochete depends on its ability to colonise the host tissues and counteract the host's defence mechanisms. Duri...

متن کامل

Borrelia burgdorferi bba74 is expressed exclusively during tick feeding and is regulated by both arthropod- and mammalian host-specific signals.

Although BBA74 initially was described as a 28-kDa virulence-associated outer-membrane-spanning protein with porin-like function, subsequent studies revealed that it is periplasmic and downregulated in mammalian host-adapted spirochetes. To further elucidate the role of this protein in the Borrelia burgdorferi tick-mammal cycle, we conducted a thorough examination of its expression profile in c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017