Interpolation methods to estimate eigenvalue distribution of some integral operators
نویسندگان
چکیده
We study the asymptotic distribution of eigenvalues of integral operators Tk defined by kernels k which belong to Triebel-Lizorkin function space Fσ pu(F qv) by using the factorization theorem and the Weyl numbers xn. We use the relation between Triebel-Lizorkin space Fσ pu(Ω) and Besov space Bτ pq(Ω) and the interpolation methods to get an estimation for the distribution of eigenvalues in Lizorkin spaces Fσ pu(F qv).
منابع مشابه
A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملQuasi-interpolatory and Interpolatory Spline Operators: Some Applications
In this paper we consider quasi-interpolatory spline operators that satisfy some interpolation conditions. We give some applications of these operators constructing approximating integral operators and numerically solving Volterra integral equations of the second kind. We prove convergence results for the constructed methods and we perform numerical examples and comparisons with other spline me...
متن کاملStable and Accurate Interpolation Operators for High-Order Multi-Block Finite-Difference Methods
Block-to-block interface interpolation operators are constructed for several common high-order finite difference discretizations. In contrast to conventional interpolation operators, these new interpolation operators maintain the strict stability, accuracy and conservation of the base scheme even when nonconforming grids or dissimilar operators are used in adjoining blocks. The stability proper...
متن کاملA boundary element method for the Dirichlet eigenvalue problem of the Laplace operator
The solution of eigenvalue problems for partial differential operators by using boundary integral equation methods usually involves some Newton potentials which may be resolved by using a multiple reciprocity approach. Here we propose an alternative approach which is in some sense equivalent to the above. Instead of a linear eigenvalue problem for the partial differential operator we consider a...
متن کاملAssessment of methods for the numerical solution of the Fredholm integral eigenvalue problem
The computational efficiency of random field representations with the Karhunen-Loève expansion relies on the numerical solution of a Fredholm integral eigenvalue problem. In this contribution, different methods for this task are compared. These include the finite element method (FEM), the finite cell method (FCM) and the Nyström method. For the FEM with linear basis functions, two different app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004