Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces.

نویسندگان

  • Mohammad I Younis
  • Ronald Miles
  • Daniel Jordy
چکیده

There is strong experimental evidence for the existence of strange modes of failure of microelectromechanical systems (MEMS) devices under mechanical shock and impact. Such failures have not been explained with conventional models of MEMS. These failures are characterized by overlaps between moving microstructures and stationary electrodes, which cause electrical shorts. This work presents modeling and simulation of MEMS devices under the combination of shock loads and electrostatic actuation, which sheds light on the influence of these forces on the pull-in instability. Our results indicate that the reported strange failures can be attributed to early dynamic pull-in instability. The results show that the combination of a shock load and an electrostatic actuation makes the instability threshold much lower than the threshold predicted, considering the effect of shock alone or electrostatic actuation alone. In this work, a single-degree-of-freedom model is utilized to investigate the effect of the shock-electrostatic interaction on the response of MEMS devices. Then, a reduced-order model is used to demonstrate the effect of this interaction on MEMS devices employing cantilever and clamped-clamped microbeams. The results of the reduced-order model are verified by comparing with finite-element predictions. It is shown that the shock-electrostatic interaction can be used to design smart MEMS switches triggered at a predetermined level of shock and acceleration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Behavior of an Electrostatically-Actuated Microbeam under Mechanical Shock

In this paper static and dynamic responses of a fixed-fixed microbeam to electrostatic force and mechanical shock for different cases have been studied. The governing equations whose solution holds the answer to all our questions about the mechanical behavior is the nonlinear elasto-electrostatic equations. Due to the nonlinearity and complexity of the derived equations analytical solution are ...

متن کامل

Dynamic Analysis of a Nano-Plate Carrying a Moving Nanoparticle Considering Eelectrostatic and Casimir Forces

This paper reports an analytical method to show the effect of electrostatic and Casimir forces on the pull-in instability and vibration of single nano-plate (SNP) carrying a moving nanoparticle. Governing equations for nonlocal forced vibration of the SNP under a moving nanoparticle considering electrostatic and Casimir forces are derived by using Hamilton’s principle for the case when two ends...

متن کامل

An Investigation Into the Effect of the PCB Motion on the Dynamic Response of MEMS Devices Under Mechanical Shock Loads

We present an investigation into the effect of the motion of a printed circuit board (PCB) on the response of a microelectromechanical system (MEMS) device to shock loads. A two-degrees-of-freedom model is used to model the motion of the PCB and the microstructure, which can be a beam or a plate. The mechanical shock is represented as a single point force impacting the PCB. The effects of the f...

متن کامل

Characterization for the performance of capacitive switches activated by mechanical shock.

This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activ...

متن کامل

Bifurcation and Chaos in Size-Dependent NEMS Considering Surface Energy Effect and Intermolecular Interactions

The impetus of this study is to investigate the chaotic behavior of a size-dependent nano-beam with double-sided electrostatic actuation, incorporating surface energy effect and intermolecular interactions. The geometrically nonlinear beam model is based on Euler-Bernoulli beam assumption. The influence of the small-scale and the surface energy effect are modeled by implementing the consistent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of micromechanics and microengineering : structures, devices, and systems

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2006