H-join decomposable graphs and algorithms with runtime single exponential in rankwidth

نویسندگان

  • Binh-Minh Bui-Xuan
  • Jan Arne Telle
  • Martin Vatshelle
چکیده

We introduce H -join decompositions of graphs, indexed by a fixed bipartite graph H . These decompositions are based on a graph operation that we call H -join, which adds edges between two given graphs by taking partitions of their two vertex sets, identifying the classes of the partitions with vertices of H , and connecting classes by the pattern H . H -join decompositions are related to modular, split and rank decompositions. Given an H -join decomposition of an n-vertex m-edge graph G we solve the Maximum Independent Set and Minimum Dominating Set problems on G in time O(n(m+2 2))) , and the q -Coloring problem in time O(n(m + 2 2))) , where ρ(H) is the rank of the adjacency matrix of H over GF(2). Rankwidth is a graph parameter introduced by Oum and Seymour, based on ranks of adjacency matrices over GF(2). For any positive integer k we define a bipartite graph Rk and show that the graphs of rankwidth at most k are exactly the graphs having an Rk -join decomposition, thereby giving an alternative graph-theoretic definition of rankwidth that does not use linear algebra. Combining our results we get algorithms that, for a graph G of rankwidth k given with its width k rank-decomposition, solves the Maximum Independent Set problem in time O(n(m+2 1 2 k+ 9 2 ×k)) , the Minimum Dominating Set problem in time O(n(m+2 3 4 k+ 23 4 × k)) and the q -Coloring problem in time O(n(m+2 q 2 k+ 5q+4 2 ×k×q)) . These are the first algorithms for NP-hard problems whose runtimes are single exponential in the rankwidth1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed cycle-E-super magic decomposition of complete bipartite graphs

An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) +  ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...

متن کامل

Algorithms for vertex subset and vertex partitioning problems with runtime single exponential in rankwidth

Let σ and ρ be finite or co-finite subsets of natural numbers. A subset of vertices S of a graph G = (V,E) is a (σ, ρ) -set of G if ∀v ∈ V : |N(v) ∩ S| ∈  σ if v ∈ S ρ if v ∈ V \ S A degree constraint matrix Dq is a q by q matrix with entries being finite or co-finite subsets of natural numbers. A Dq -partition in a graph G = (V,E) is a partition V1, V2, ..., Vq of V such that for 1 ≤ i, j ≤ q...

متن کامل

Mixed cycle-E-super magic decomposition of complete bipartite graphs

An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ∑νεV (H) f(v) + ∑νεE (H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥...

متن کامل

Some probabilistic results on width measures of graphs

Fixed parameter tractable (FPT) algorithms run in time f(p(x)) poly(|x|), where f is an arbitrary function of some parameter p of the input x and poly is some polynomial function. Treewidth, branchwidth, cliquewidth, NLC-width, rankwidth, and booleanwidth are parameters often used in the design and analysis of such algorithms for problems on graphs. We show asymptotically almost surely (aas), b...

متن کامل

Fast algorithms for vertex subset and vertex partitioning problems on graphs of low boolean-width⋆

We consider the graph parameter boolean-width, related to the number of different unions of neighborhoods across a cut of a graph. Boolean-width is similar to rankwidth, which is related to the number of GF [2]-sums (1+1=0) of neighborhoods instead of the Boolean-sums (1+1=1) used for boolean-width. It compares well to the other four well-known width parameters tree-width, branch-width, clique-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 158  شماره 

صفحات  -

تاریخ انتشار 2010