The enhancement of photodegradation efficiency using Pt-TiO2 catalyst.
نویسندگان
چکیده
This study investigates the mechanism of photosensitization and the recombination of excited electron-hole pairs affected by depositing platinum (Pt) on the surface of titanium dioxide (TiO2). A new catalyst of Pt-TiO2 was prepared by a photoreduction process. Being model reactions, the photocatalytic oxidation of methylene blue (MB) and methyl orange (MO) in aqueous solutions using the Pt-TiO2 catalyst was carried out under either UV or visible light irradiation. The experimental results indicate that an optimal content of 0.75%Pt-TiO2 achieves the best photocatalytic performance of MB and MO degradation and that the Pt-TiO2 catalyst can be sensitized by visible light. The interaction of Pt and TiO2 was investigated by means of UV-Vis absorption spectra, photoluminescence emission spectra, and X-ray photoelectron emission spectroscopy. The Pt0, Pt2+ and Pt4+ species existing on the surface of Pt-TiO2, and the Ti3+ species existing in its lattice may form a defect energy level. The Pt impurities, including Pt, Pt(OH)2, and PtO2, and the defect energy level absorb visible light more efficiently in comparison with the pure TiO2 and hinder the recombination rate of excited electron-hole pairs.
منابع مشابه
Comparison of Photocatalytic Activities of Two Different Dyes Using Pt-Modified TiO2 Nanoparticles under Visible Light
The photocatalytic degradation of Acid Red 91 (AR91) and Acid Yellow 23 (AY23) with different molecular structures and different substitute groups using Pt modified TiO2 (PtTiO2 ) nanoparticles was investigated in the presence of visible light irradiation. Pt-TiO2 nanoparticles were prepared with photodiposition method (PD) and characterized by X-ray diffraction (XRD), scanning electron microgr...
متن کاملThe enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment.
In this study, conventional TiO2 powder was heated in hydrogen (H2) gas at a high temperature as pretreatment. The photoactivity of the treated TiO2 samples was evaluated in the photodegradation of sulfosalicylic acid (SSA) in aqueous suspension. The experimental results demonstrated that the photodegradation rates of SSA were significantly enhanced by using the H2-treated TiO2 catalysts and an...
متن کاملThe Comparative Photodegradation Activities of Pentachlorophenol (PCP) and Polychlorinated Biphenyls (PCBs) Using UV Alone and TiO2-Derived Photocatalysts in Methanol Soil Washing Solution
Photochemical treatment is increasingly being applied to remedy environmental problems. TiO2-derived catalysts are efficiently and widely used in photodegradation applications. The efficiency of various photochemical treatments, namely, the use of UV irradiation without catalyst or with TiO2/graphene-TiO2 photodegradation methods was determined by comparing the photodegadation of two main types...
متن کاملDegradation of Phthalocyanine by a Core-Shell TiO2 Photocatalyst: Effect of Iron Dopping on Band Gap
In this research, initially, the sol-gel method was employed to produce γ-alumina and TiO2 catalysts with core-shell structure. Iron (III) was used as a dopant. The newlyproduced core-shells were Fe/TiO2// Fe/ γ-Al2O3 (FTFA). Sulfonated cobalt phthalocyanine was used as a dye pollutant in Merox process. By doping Fe in TiO2 catalyst, the ef...
متن کاملFe/TiO2 Catalyst for Photodegradation of Phenol in Water
In this work, Fe/TiO2 nanostructured catalyst was prepared using sol-gel method developed by Yoldas and tested in degradation of phenol in water under UV radiation. The synthesized catalyst was characterized by XRF, XRD, specific surface area and porosimetry, and SEM methods. The porosimetry revealed the mesopore structure of the catalyst. Results of SEM confirmed the nano dispersion of iron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 48 10 شماره
صفحات -
تاریخ انتشار 2002