Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.
نویسندگان
چکیده
Net photosynthetic rates (Pns) in leaves were compared between rice plants grown in ambient air control and free-air CO2 enrichment (FACE, about 200 micromol mol(-1) above ambient) treatment rings. When measured at the same CO2 concentration, the Pn of FACE leaves decreased significantly, indicating that photosynthetic acclimation to high CO2 occurs. Although stomatal conductance (Gs) in FACE leaves was markedly decreased, intercellular CO2 concentrations (Ci) were almost the same in FACE and ambient leaves, indicating that the photosynthetic acclimation is not caused by the decreased Gs. Furthermore, carboxylation efficiency and maximal Pn, both light and CO2-saturated Pn, were decreased in FACE leaves, as shown by the Pn-Ci curves. In addition, the soluble protein, Rubisco (ribulose-1,5-bisphosphate caboxylase/oxygenase), and its activase contents as well as the sucrose-phosphate synthase activity decreased significantly, while some soluble sugar, inorganic phosphate, chlorophyll and light-harvesting complex II (LHC II) contents increased in FACE leaves. It appears that the photosynthetic acclimation in rice leaves is related to both ribulose-1,5-bisphosphate (RuBP) carboxylation limitation and RuBP regeneration limitation.
منابع مشابه
Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-Air CO2 enrichment
Acclimation of photosynthesis to elevated CO2 has previously been shown to be more pronounced when N supply is poor. Is this a direct effect of N or an indirect effect of N by limiting the development of sinks for photoassimilate? This question was tested by growing a perennial ryegrass (Lolium perenne) in the field under elevated (60 Pa) and current (36 Pa) partial pressures of CO2 (pCO2) at l...
متن کاملEffects of chronic ozone and elevated atmospheric CO2 concentrations on ribulose-1,5-bisphosphate in soybean (Glycine max)
unit Rubisco binding site. Elevated CO2, in CF or O3-fumiRibulose-1,5-bisphosphate (RuBP) pool size was determined at regular intervals during the growing season to understand gated air, generally had no significant effect on RuBP pool size, thus mitigating the negative O3 effect. The RuBP pools the effects of tropospheric ozone concentrations, elevated atmospheric carbon dioxide concentrations...
متن کاملRibulose-1,5-bisphosphate Carboxylase/Oxygenase content, assimilatory charge, and mesophyll conductance in leaves
The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 &mgr;mol active sites m-2. Mesophyll conductance (&mgr;) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange ...
متن کاملPhotosynthesis, Ribulose-1,5-bisphosphate Carboxylase, Electron Transport, and Ribulose 1,5-Bisphosphate of Virescent and Normal Green Wheat Leaves.
CO(2) gas exchange, ribulose-1,5-bisphosphate, and electron transport have been measured in leaves of a yellow-green mutant of wheat (Triticum durum var Cappelli) and its wild type strain grown in the field. All these parameters, expressed on leaf area basis, were similar in both genotypes except electron transport which was more than double in the wild type. These results, treated according to...
متن کاملSeasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum.
The balance between the capacities of RuBP (ribulose-1,5-bisphosphate) carboxylation (V(cmax)) and RuBP regeneration (expressed as the maximum electron transport rate, J(max)) determines the CO(2) dependence of the photosynthetic rate. As it has been suggested that this balance changes depending on the growth temperature, the hypothesis that the seasonal change in air temperature affects the ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 46 7 شماره
صفحات -
تاریخ انتشار 2005