A Low-order Nonconforming Finite Element for Reissner-Mindlin Plates
نویسنده
چکیده
We propose a locking-free element for plate bending problems, based on the use of nonconforming piecewise linear functions for both rotations and deflections. We prove optimal error estimates with respect to both the meshsize and the analytical solution regularity.
منابع مشابه
A Finite Volume Formulation for the Elasto-Plastic Analysis of Rectangular Mindlin-Reissner Plates, a Non-Layered Approach
This paper extends the previous work of authors and presents a non-layered Finite Volume formulation for the elasto-plastic analysis of Mindlin-Reissner plates. The incremental algorithm of the elasto-plastic solution procedure is shown in detail. The performance of the formulation is examined by analyzing of plates with different boundary conditions and loading types. The results are illustrat...
متن کاملA Uniformly Accurate Finite Element Method for the Reissner–mindlin Plate*
A simple finite element method for the Reissner–Mindlin plate model in the primitive variables is presented and analyzed. The method uses nonconforming linear finite elements for the transverse displacement and conforming linear finite elements enriched by bubbles for the rotation, with the computation of the element stiffness matrix modified by the inclusion of a simple elementwise averaging. ...
متن کاملTwo lower order nonconforming rectangular elements for the Reissner-Mindlin plate
In this paper, we propose two lower order nonconforming rectangular elements for the Reissner-Mindlin plate. The first one uses the conforming bilinear element to approximate both components of the rotation, and the modified nonconforming rotated Q1 element to approximate the displacement, whereas the second one uses the modified nonconforming rotated Q1 element to approximate both the rotation...
متن کاملA Superconvergent Finite Element Scheme for the Reissner-mindlin Plate by Projection Methods
The Reissner-Mindlin model is frequently used by engineers for plates and shells of small to moderate thickness. This model is well known for its “locking” phenomenon so that many numerical approximations behave poorly when the thickness parameter tends to zero. Following the formulation derived by Brezzi and Fortin, we construct a new finite element scheme for the Reissner-Mindlin model using ...
متن کاملA Family of Discontinuous Galerkin Finite Elements for the Reissner-Mindlin Plate
We develop a family of locking-free elements for the Reissner– Mindlin plate using Discontinuous Galerkin techniques, one for each odd degree, and prove optimal error estimates. A second family uses conforming elements for the rotations and nonconforming elements for the transverse displacement, generalizing the element of Arnold and Falk to higher degree.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 42 شماره
صفحات -
تاریخ انتشار 2005