Linear Colouring of Planar Graphs with Prescribed Girth and Maximum Degree

نویسندگان

  • Rok Erman
  • Riste Škrekovski
چکیده

A linear colouring of a graph is a proper vertex colouring such that the subgraph induced by any two colour classes is a set of vertex disjoint paths. The corresponding linear chromatic number of a graph G, namely lc(G), is the minimum number of colours in a linear colouring of G. We prove that for a graph G with girth g ≥ 8 and maximum degree ∆ ≥ 7 the inequality on its linear colouring number holds: lc(G) ≤ ⌈∆2 ⌉+1. This improves the girth assumption of a previously known bound of Raspaud and Wang [9].

منابع مشابه

Strong edge-colouring of sparse planar graphs

A strong edge-colouring of a graph is a proper edge-colouring where each colour class induces a matching. It is known that every planar graph with maximum degree∆ has a strong edge-colouring with at most 4∆ + 4 colours. We show that 3∆ + 1 colours suffice if the graph has girth 6, and 4∆ colours suffice if ∆ ≥ 7 or the girth is at least 5. In the last part of the paper, we raise some questions ...

متن کامل

List-colouring Squares of Sparse Subcubic Graphs

The problem of colouring the square of a graph naturally arises in connection with the distance labelings, which have been studied intensively. We consider this problem for sparse subcubic graphs. We show that the choosability χ (G2) of the square of a subcubic graph G of maximum average degree d is at most four if d < 24/11 and G does not contain a 5-cycle, χ (G2) is at most five if d < 7/3 an...

متن کامل

Choosability of the square of planar subcubic graphs with large girth

We first show that the choose number of the square of a subcubic graph with maximum average degree less than 18/7 is at most 6. As a corollary, we get that the choose number of the square of a planar graph with girth at least 9 is at most 6. We then show that the choose number of the square of a subcubic planar graph with girth at least 13 is at most 5. Key-words: colouring, list colouring, pla...

متن کامل

List-Coloring Squares of Sparse Subcubic Graphs

The problem of colouring the square of a graph naturally arises in connection with the distance labelings, which have been studied intensively. We consider this problem for sparse subcubic graphs and show that the choosability χ`(G 2) of the square of a subcubic graph G of maximum average degree d is at most four if d < 24/11 and G does not contain a 5-cycle, χ`(G 2) is at most five if d < 7/3 ...

متن کامل

Improper choosability of graphs and maximum average degree

Improper choosability of planar graphs has been widely studied. In particular, Škrekovski investigated the smallest integer gk such that every planar graph of girth at least gk is k-improper 2-choosable. He proved [9] that 6 ≤ g1 ≤ 9; 5 ≤ g2 ≤ 7; 5 ≤ g3 ≤ 6 and ∀k ≥ 4, gk = 5. In this paper, we study the greatest real M(k, l) such that every graph of maximum average degree less than M(k, l) is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011