Optimal Bounds for the Volumes of Kähler-einstein Fano Manifolds
نویسنده
چکیده
We show that any n-dimensional Ding semistable Fano manifold X satisfies that the anti-canonical volume is less than or equal to the value (n + 1). Moreover, the equality holds if and only if X is isomorphic to the n-dimensional projective space. Together with a result of Berman, we get the optimal upper bound for the anti-canonical volumes of n-dimensional Kähler-Einstein Fano manifolds.
منابع مشابه
Kähler-Ricci flow, Kähler-Einstein metric, and K-stability
We prove the existence of Kähler-Einstein metric on a K-stable Fano manifold using the recent compactness result on Kähler-Ricci flows. The key ingredient is an algebro-geometric description of the asymptotic behavior of Kähler-Ricci flow on Fano manifolds. This is in turn based on a general finite dimensional discussion, which is interesting in its own and could potentially apply to other prob...
متن کاملKähler-ricci Flow on Stable Fano Manifolds
We study the Kähler-Ricci flow on Fano manifolds. We show that if the curvature is bounded along the flow and if the manifold is K-polystable and asymptotically Chow semistable, then the flow converges exponentially fast to a Kähler-Einstein metric.
متن کاملQuasi-projectivity of the Moduli Space of Smooth Kähler-einstein Fano Manifolds
In this note, we prove that there is a canonical continuous Hermitian metric on the CM line bundle over the proper moduli space M of smoothable Kähler-Einstein Fano varieties. The curvature of this metric is the Weil-Petersson current, which exists as a positive (1,1)-current on M and extends the canonical Weil-Petersson current on the moduli space parametrizing smooth Kähler-Einstein Fano mani...
متن کاملResolutions of non-regular Ricci-flat Kähler cones
We present explicit constructions of complete Ricci-flat Kähler metrics that are asymptotic to cones over non-regular Sasaki-Einstein manifolds. The metrics are constructed from a complete Kähler-Einstein manifold (V, gV ) of positive Ricci curvature and admit a Hamiltonian two-form of order two. We obtain Ricci-flat Kähler metrics on the total spaces of (i) holomorphic C/Zp orbifold fibrations...
متن کاملExamples of Non-symmetric Kähler-einstein Toric Fano Manifolds
Let us first recall our setting. In the toric case, there is a correspondence between n-dimensional nonsingular Fano varieties and ndimensional Fano polytopes, where the Fano varieties are biregular isomorphic if and only if the corresponding Fano polytopes are unimodularly equivalent. Here, given a lattice N of rank n, a Fano polytope Q ⊆ NR := N ⊗Z R is given as a lattice polytope containing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016