Localized changes to glycogen synthase kinase-3 and collapsin response mediator protein-2 in the Huntington's disease affected brain.

نویسندگان

  • Nastasia K H Lim
  • Lin W Hung
  • Terence Y Pang
  • Catriona A Mclean
  • Jeffrey R Liddell
  • James B Hilton
  • Qiao-Xin Li
  • Anthony R White
  • Anthony J Hannan
  • Peter J Crouch
چکیده

All cases of Huntington's disease (HD) are caused by mutant huntingtin protein (mhtt), yet the molecular mechanisms that link mhtt to disease symptoms are not fully elucidated. Given glycogen synthase kinase-3 (GSK3) is implicated in several neurodegenerative diseases as a molecular mediator of neuronal decline and widely touted as a therapeutic target, we investigated GSK3 in cells expressing mhtt, brains of R6/1 HD mice and post-mortem human brain samples. Consistency in data across the two models and the human brain samples indicate decreased GSK3 signalling contributes to neuronal dysfunction in HD. Inhibitory phosphorylation of GSK3 (pGSK3) was elevated in mhtt cells and this appeared related to an overall energy metabolism deficit as the mhtt cells had less ATP and inhibiting ATP production in control cells expressing non-pathogenic htt with paraquat also increased pGSK3. pGSK3 was increased and ATP levels decreased in the frontal cortex and striatum of R6/1 mice and levels of cortical pGSK3 inversely correlated with cognitive function of the mice. Consistent with decreased GSK3 activity in the R6/1 mouse brain, β-catenin levels were increased and phosphorylation of collapsin response mediator protein-2 (CRMP2) decreased in the frontal cortex where inhibitory phosphorylation of GSK3 was the greatest. pGSK3 was predominantly undetectable in HD and healthy control human brain samples, but levels of total GSK3 were decreased in the HD-affected frontal cortex and this correlated with decreased pCRMP2. Thus, disruptions to cortical GSK3 signalling, possibly due to localized energy metabolism deficits, appear to contribute to the cognitive symptoms of HD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential regulation of collapsin response mediator protein 2 (CRMP2) phosphorylation by GSK3ß and CDK5 following traumatic brain injury

Aberrant ion channel function has been heralded as a main underlying mechanism driving epilepsy and its symptoms. However, it has become increasingly clear that treatment strategies targeting voltage-gated sodium or calcium channels merely mask the symptoms of epilepsy without providing disease-modifying benefits. Ion channel function is likely only one important cog in a highly complex machine...

متن کامل

GSK-3β Regulates Phosphorylation of CRMP-2 and Neuronal Polarity

Neurons are highly polarized and comprised of two structurally and functionally distinct parts, an axon and dendrites. We previously showed that collapsin response mediator protein-2 (CRMP-2) is critical for specifying axon/dendrite fate, possibly by promoting neurite elongation via microtubule assembly. Here, we showed that glycogen synthase kinase-3beta (GSK-3beta) phosphorylated CRMP-2 at Th...

متن کامل

Dock3 stimulates axonal outgrowth via GSK-3β-mediated microtubule assembly.

Dock3, a new member of the guanine nucleotide exchange factors, causes cellular morphological changes by activating the small GTPase Rac1. Overexpression of Dock3 in neural cells promotes axonal outgrowth downstream of brain-derived neurotrophic factor (BDNF) signaling. We previously showed that Dock3 forms a complex with Fyn and WASP (Wiskott-Aldrich syndrome protein) family verprolin-homologo...

متن کامل

Biochemical characterization of novel lignans isolated from the wood of Taxus yunnanensis as effective stimulators for glycogen synthase kinase-3β and the phosphorylation of basic brain proteins by the kinase in vitro.

The stimulatory and inhibitory effects of several compounds and lignans isolated from the water extract of Taxus yunnanensis on the phosphorylation of three functional brain proteins (bovine myelin basic protein (bMBP), recombinant human tau protein (rhTP) and rat collapsin response mediator protein-2 (rCRMP-2)) by glycogen synthase kinase-3β (GSK-3β) were quantitatively compared in vitro, usin...

متن کامل

Cdk5-mediated phosphorylation of Axin directs axon formation during cerebral cortex development.

Axon formation is critical for the establishment of connections between neurons, which is a prerequisite for the development of neural circuitry. Kinases such as cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase-3β (GSK-3β), have been implicated to regulate axon outgrowth. Nonetheless, the in vivo roles of these kinases in axon development and the underlying signaling mechanisms rem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 23 15  شماره 

صفحات  -

تاریخ انتشار 2014