Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces
نویسندگان
چکیده
Time series averaging in dynamic time warping (DTW) spaces has been successfully applied to improve pattern recognition systems. This article proposes and analyzes subgradient methods for the problem of finding a sample mean in DTW spaces. The class of subgradient methods generalizes existing sample mean algorithms such as DTW Barycenter Averaging (DBA). We show that DBA is a majorize-minimize algorithm that converges to necessary conditions of optimality after finitely many iterations. Empirical results show that for increasing sample sizes the proposed stochastic subgradient (SSG) algorithm is more stable and finds better solutions in shorter time than the DBA algorithm on average. Therefore, SSG is useful in online settings and for non-small sample sizes. The theoretical and empirical results open new paths for devising sample mean algorithms: nonsmooth optimization methods and modified variants of pairwise averaging methods. 1 ar X iv :1 70 1. 06 39 3v 1 [ cs .C V ] 2 3 Ja n 20 17
منابع مشابه
Randomized Block Subgradient Methods for Convex Nonsmooth and Stochastic Optimization
Block coordinate descent methods and stochastic subgradient methods have been extensively studied in optimization and machine learning. By combining randomized block sampling with stochastic subgradient methods based on dual averaging ([22, 36]), we present stochastic block dual averaging (SBDA)—a novel class of block subgradient methods for convex nonsmooth and stochastic optimization. SBDA re...
متن کاملOptimal Warping Paths are unique for almost every pair of Time Series
Update rules for learning in dynamic time warping spaces are based on optimal warping paths between parameter and input time series. In general, optimal warping paths are not unique resulting in adverse effects in theory and practice. Under the assumption of squared error local costs, we show that no two warping paths have identical costs almost everywhere in a measure-theoretic sense. Two dire...
متن کاملAsymmetric learning vector quantization for efficient nearest neighbor classification in dynamic time warping spaces
The nearest neighbor method together with the dynamic time warping (DTW) distance is one of the most popular approaches in time series classification. This method suffers from high storage and computation requirements for large training sets. As a solution to both drawbacks, this article extends learning vector quantization (LVQ) from Euclidean spaces to DTW spaces. The proposed LVQ scheme uses...
متن کاملMinimization of Nonsmooth Convex Functionals in Banach Spaces
We develop a uniied framework for convergence analysis of subgradient and subgradient projection methods for minimization of nonsmooth convex functionals in Banach spaces. The important novel features of our analysis are that we neither assume that the functional is uniformly or strongly convex, nor use regularization techniques. Moreover, no boundedness assumptions are made on the level sets o...
متن کاملProgressive and Iterative Approaches for Time Series Averaging
Averaging a set of time series is a major topic for many temporal data mining tasks as summarization, extracting prototype or clustering. Time series averaging should deal with the tricky multiple temporal alignment problem; a still challenging issue in various domains. This work compares the major progressive and iterative averaging time series methods under dynamic time warping (dtw).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 74 شماره
صفحات -
تاریخ انتشار 2018