Exponential Dowling Structures ∗ Richard EHRENBORG and Margaret
نویسنده
چکیده
The notion of exponential Dowling structures is introduced, generalizing Stanley’s original theory of exponential structures. Enumerative theory is developed to determine the Möbius function of exponential Dowling structures, including a restriction of these structures to elements whose types satisfy a semigroup condition. Stanley’s study of permutations associated with exponential structures leads to a similar vein of study for exponential Dowling structures. In particular, for the extended r-divisible partition lattice we show the Möbius function is, up to a sign, the number of permutations in the symmetric group on rn+ k elements having descent set {r, 2r, . . . , nr}. Using Wachs’ original EL-labeling of the r-divisible partition lattice, the extended r-divisible partition lattice is shown to be EL-shellable.
منابع مشابه
Exponential Dowling Structures ∗ Richard EHRENBORG and Margaret A . READDY
The notion of exponential Dowling structures is introduced, generalizing Stanley’s original theory of exponential structures. Enumerative theory is developed to determine the Möbius function of exponential Dowling structures, including a restriction of these structures to elements whose types satisfy a semigroup condition. Stanley’s study of permutations associated with exponential structures l...
متن کاملExponential Dowling structures
The notion of exponential Dowling structures is introduced, generalizing Stanley’s original theory of exponential structures. Enumerative theory is developed to determine the Möbius function of exponential Dowling structures, including a restriction of these structures to elements whose types satisfy a semigroup condition. Stanley’s study of permutations associated with exponential structures l...
متن کاملThe Dowling Transform of Subspace Arrangements
We define the Dowling transform of a real frame arrangement and show how the characteristic polynomial changes under this transformation. As a special case, the Dowling transform sends the braid arrangement An to the Dowling arrangement. Using Zaslavsky's characterization of supersolvability of signed graphs, we show supersolvability of an arrangement is preserved under the Dowling transform. W...
متن کاملOn Flag Vectors, the Dowling Lattice, and Braid Arrangements
We study complex hyperplane arrangements whose intersection lattices, known as the Dowling lattices, are a natural generalization of the partition lattice. We give a combinatorial description of the Dowling lattice via enriched partitions to obtain an explicit EL-labeling and then find a recursion for the flag h-vector in terms of weighted derivations. When the hyperplane arrangements are real ...
متن کاملOn Valuations, the Characteristic Polynomial, and Complex Subspace Arrangements
We present a new combinatorial method to determine the characteristic polynomial of any subspace arrangement that is defined over an infinite field, generalizing the work of Blass and Sagan. Our methods stem from the theory of valuations and Groemer's integral theorem. As a corollary of our main theorem, we obtain a result of Zaslavsky about the number of chambers of a real hyperplane arrangeme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008