Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres.
نویسندگان
چکیده
Magnetoelectric 0-1 composites comprising CoFe2O4 (CFO) nanoparticles in a polyvinylidene fluoride (PVDF) polymer-fibre matrix have been prepared by electrospinning. The average diameter of the electrospun composite fibres is ∼325 nm, independent of the nanoparticle content, and the amount of the crystalline polar β phase is strongly enhanced when compared to pure PVDF polymer fibres. The piezoelectric response of these electroactive nanofibres is modified by an applied magnetic field, thus evidencing the magnetoelectric character of the CFO/PVDF 0-1 composites.
منابع مشابه
High-sensitivity acoustic sensors from nanofibre webs
Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric...
متن کاملResponse Surface Modeling and Optimization of Electrospun Nanofiber Membranes
The experimental design and response surface methodology (RSM) have been used to develop predictive models for simulation and optimization of electrospun polyvinylidene fluoride non-woven membranes. The objective is to prepare electrospun fibers with small diameters and narrow diameter distribution. The factors considered for experimental design were the polymer dope solution flow rate, the app...
متن کاملDemonstration of magnetoelectric scanning probe microscopy.
A near-field room temperature scanning magnetic probe microscope has been developed using a laminated magnetoelectric sensor. The simple trilayer longitudinal-transverse mode sensor, fabricated using Metglas as the magnetostrictive layer and polyvinylidene fluoride as the piezoelectric layer, shows an ac field sensitivity of 467+/-3 microV/Oe in the measured frequency range of 200 Hz-8 kHz. The...
متن کاملWide-Range Magnetoelectric Response on Hybrid Polymer Composites Based on Filler Type and Content
In order to obtain a wide-range magnetoelectric (ME) response on a ME nanocomposite that matches industry requirements, Tb0.3Dy0.7Fe1.92 (Terfenol-D)/CoFe2O4/P(VDF-TrFE) flexible films were produced by the solvent casting technique and their morphologic, piezoelectric, magnetic and magnetoelectric properties were investigated. The obtained composites revealed a high piezoelectric response (≈−18...
متن کاملEnhancing the magnetoelectric response of Metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect
laminates by exploiting the flux concentration effect Z. Fang, S. G. Lu, F. Li, S. Datta, Q. M. Zhang, and M. El Tahchi Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA LPA-GBMI, Faculty of Sciences II, Department of Physics, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 17 شماره
صفحات -
تاریخ انتشار 2015