Learning-related postburst afterhyperpolarization reduction in CA1 pyramidal neurons is mediated by protein kinase A.
نویسندگان
چکیده
Learning-related reductions of the postburst afterhyperpolarization (AHP) in hippocampal pyramidal neurons have been shown ex vivo, after trace eyeblink conditioning. The AHP is also reduced by many neuromodulators, such as norepinephrine, via activation of protein kinases. Trace eyeblink conditioning, like other hippocampus-dependent tasks, relies on protein synthesis for consolidating the learned memory. Protein kinase A (PKA) has been shown to be a key contributor for protein synthesis via the cAMP-response element-binding pathway. Here, we have explored a potential involvement of PKA and protein kinase C (PKC) in maintaining the learning-related postburst AHP reduction observed in CA1 pyramidal neurons. Bath application of isoproterenol (1 muM), a beta-adrenergic agonist that activates PKA, significantly reduced the AHP in CA1 neurons from control animals, but not from rats that learned. This occlusion suggests that PKA activity is involved in maintaining the AHP reduction measured ex vivo after successful learning. In contrast, bath application of the PKC activator, (-) indolactam V (0.2 muM), significantly reduced the AHP in CA1 neurons from both control and trained rats, indicating that PKC activity is not involved in maintaining the AHP reduction at this point after learning.
منابع مشابه
Learning increases intrinsic excitability of hippocampal interneurons.
Learning-related intrinsic excitability changes of pyramidal neurons via modulation of the postburst afterhyperpolarization (AHP) have been repeatedly demonstrated in multiple brain regions (especially the hippocampus), after a variety of learning tasks, and in multiple species. While exciting and important, the changes in pyramidal neurons are only a part of the neural circuitry involved in su...
متن کاملIncreasing SK2 channel activity impairs associative learning.
Enhanced intrinsic neuronal excitability of hippocampal pyramidal neurons via reductions in the postburst afterhyperpolarization (AHP) has been hypothesized to be a biomarker of successful learning. This is supported by considerable evidence that pharmacologic enhancement of neuronal excitability facilitates learning. However, it has yet to be demonstrated that pharmacologic reduction of neuron...
متن کاملTitle : Increasing SK 2 Channel Activity Impairs
29 Enhanced intrinsic neuronal excitability of hippocampal pyramidal neurons via 30 reductions in the postburst afterhyperpolarization (AHP) has been hypothesized to be a 31 biomarker of successful learning. This is supported by considerable evidence that 32 pharmacological enhancement of neuronal excitability facilitates learning. However, it 33 has yet to be demonstrated that pharmacological ...
متن کاملTitle: Watermaze Learning Enhances Excitability of CA1 Pyramidal Neurons
The dorsal hippocampus is crucial for learning the hidden-platform location in the hippocampus-dependent, spatial watermaze task. We have previously demonstrated that the postburst afterhyperpolarization (AHP) of hippocampal pyramidal neurons is reduced after acquisition of the hippocampus-dependent, temporal trace eyeblink conditioning task. We report here that the AHP and one or more of its a...
متن کاملMetrifonate decreases sI(AHP) in CA1 pyramidal neurons in vitro.
Metrifonate, a cholinesterase inhibitor, has been shown to enhance learning in aging rabbits and rats, and to alleviate the cognitive deficits observed in Alzheimer's disease patients. We have previously determined that bath application of metrifonate reduces the spike frequency adaptation and postburst afterhyperpolarization (AHP) in rabbit CA1 pyramidal neurons in vitro using sharp electrode ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 5 شماره
صفحات -
تاریخ انتشار 2009