High pressure driven structural and electrochemical modifications in layered lithium transition metal intercalation oxides†
نویسندگان
چکیده
High pressure–high temperature (HP/HT) methods are utilized to introduce structural modifications in the layered lithium transition metal oxides LiCoO2 and Li[NixLi1/3 2x/3Mn2/3 x/3]O2 where x 1⁄4 0.25 and 0.5. The electrochemical property to structure relationship is investigated combining computational and experimental methods. Both methods agree that the substitution of transition metal ions with Li ions in the layered structure affects the compressibility of the materials. We have identified that following high pressure and high temperature treatment up to 8.0 GPa, LiCoO2 did not show drastic structural changes, and accordingly the electrochemical properties of the high pressure treated LiCoO2 remain almost identical to the pristine sample. The high pressure treatment of LiNi0.5Mn0.5O2 (x 1⁄4 0.5) caused structural modifications that decreased the layered characteristics of the material inhibiting its electrochemical lithium intercalation. For Li[Li1/6Ni1/4Mn7/12]O2 more drastic structural modifications are observed following high pressure treatment, including the formation of a second layered phase with increased Li/Ni mixing and a contracted c/a lattice parameter ratio. The post-treated Li[Li1/6Ni1/4Mn7/12]O2 samples display a good electrochemical response, with clear differences compared to the pristine material in the 4.5 voltage region. Pristine and post-treated Li[Li1/6Ni1/4Mn7/12]O2 deliver capacities upon cycling near 200 mA h g , even though additional structural modifications are observed in the post-treated material following electrochemical cycling. The results presented underline the flexibility of the structure of Li[Li1/6Ni1/4Mn7/12]O2; a material able to undergo large structural variations without significant negative impacts on the electrochemical performance as seen in LiNi0.5Mn0.5O2. In that sense, the Li excess materials are superior to LiNi0.5Mn0.5O2, whose electrochemical characteristics are very sensitive to structural modifications.
منابع مشابه
Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
To meet the increasing demands of energy storage, particularly for transportation applications such as plug-in hybrid electric vehicles, researchers will need to develop improved lithium-ion battery electrode materials that exhibit high energy density, high power, better safety, and longer cycle life. The acceleration of materials discovery, synthesis, and optimization will benefit from the com...
متن کاملSpatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and it...
متن کاملOperando Lithium Dynamics in the LiRich Layered Oxide Cathode Material via Neutron Diffraction
DOI: 10.1002/aenm.201502143 in battery technology have come since its fi rst demonstration, the high energy demands needed to electrify the automotive industry have not yet been met with the current technology. [ 2,3 ] One considerable bottleneck is the cathode energy density. [ 2,3 ] The lithium layered oxides utilize transition metal redox pairs for charge/ discharge compensation during lithi...
متن کاملElectronic Environments and Electrochemical Properties of Lithium Storage Materials
The local electronic environments and energy storage properties of lithium electrodes are investigated through inelastic electron scattering and electrochemical measurements. Experimental and computational methods are developed to characterize the electronic structure of lithiated compounds during electrochemical cycling. An electrochemical investigation of new lithium alloys has led to a bette...
متن کاملIdentifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study†
High voltage cathode materials Li-excess layered oxide compounds Li[NixLi1/3 2x/3Mn2/3 x/3]O2 (0 < x < 1/2) are investigated in a joint study combining both computational and experimental methods. The bulk and surface structures of pristine and cycled samples of Li[Ni1/5Li1/5Mn3/5]O2 are characterized by synchrotron X-Ray diffraction together with aberration corrected Scanning Transmission Elec...
متن کامل