The Gaussian derivative model for spatial-temporal vision: I. Cortical model.

نویسندگان

  • R A Young
  • R M Lesperance
  • W W Meyer
چکیده

How do we see the motion of objects as well as their shapes? The Gaussian Derivative (GD) spatial model is extended to time to help answer this question. The GD spatio-temporal model requires only two numbers to describe the complete three-dimensional space-time shapes of individual receptive fields in primate visual cortex. These two numbers are the derivative numbers along the respective spatial and temporal principal axes of a given receptive field. Nine transformation parameters allow for a standard geometric association of these intrinsic axes with the extrinsic environment. The GD spatio-temporal model describes in one framework the following properties of primate simple cell fields: motion properties, number of lobes in space-time, spatial orientation. location, and size. A discrete difference-of-offset-Gaussians (DOOG) model provides a plausible physiological mechanism to form GD-like model fields in both space and time. The GD model hypothesizes that receptive fields at the first stage of processing in the visual cortex approximate 'derivative analyzers' that estimate local spatial and temporal derivatives of the intensity profile in the visual environment. The receptive fields as modeled provide operators that can allow later stages of processing in either a biological or machine vision system to estimate the motion as well as the shapes of objects in the environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gaussian derivative model for spatial-temporal vision: II. Cortical data.

Receptive fields of simple cells in the primate visual cortex were well fit in the space and time domains by the Gaussian Derivative (GD) model for spatio-temporal vision. All 23 fields in the data sample could be fit by one equation. varying only a single shape number and nine geometric transformation parameters. A difference-of-offset-Gaussians (DOOG) mechanism for the GD model also fit the d...

متن کامل

Groundwater Level Forecasting Using Wavelet and Kriging

In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...

متن کامل

Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model

Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...

متن کامل

Robot Motion Vision Pait I: Theory

A direct method called fixation is introduced for solving the general motion vision problem, arbitrary motion relative to an arbitrary environment. This method results in a linear constraint equation which explicitly expresses the rotational velocity in terms of the translational velocity. The combination of this constraint equation with the Brightness-Change Constraint Equation solves the gene...

متن کامل

Determination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City

Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Spatial vision

دوره 14 3-4  شماره 

صفحات  -

تاریخ انتشار 2001