Multifactorial interplay controls the splicing profile of Alu-derived exons.
نویسندگان
چکیده
Exonization of Alu elements creates primate-specific genomic diversity. Here we combine bioinformatic and experimental methodologies to reconstruct the molecular changes leading to exon selection. Our analyses revealed an intricate network involved in Alu exonization. A typical Alu element contains multiple sites with the potential to serve as 5' splice sites (5'ss). First, we demonstrated the role of 5'ss strength in controlling exonization events. Second, we found that a cryptic 5'ss enhances the selection of a more upstream site and demonstrate that this is mediated by binding of U1 snRNA to the cryptic splice site, challenging the traditional role attributed to U1 snRNA of binding the 5'ss only. Third, we used a simple algorithm to identify specific sequences that determine splice site selection within specific Alu exons. Finally, by inserting identical exons within different sequences, we demonstrated the importance of flanking genomic sequences in determining whether an Alu exon will undergo exonization. Overall, our results demonstrate the complex interplay between at least four interacting layers that affect Alu exonization. These results shed light on the mechanism through which Alu elements enrich the primate transcriptome and allow a better understanding of the exonization process in general.
منابع مشابه
Splicing repression allows the gradual emergence of new Alu-exons in primate evolution
Alu elements are retrotransposons that frequently form new exons during primate evolution. Here, we assess the interplay of splicing repression by hnRNPC and nonsense-mediated mRNA decay (NMD) in the quality control and evolution of new Alu-exons. We identify 3100 new Alu-exons and show that NMD more efficiently recognises transcripts with Alu-exons compared to other exons with premature termin...
متن کاملDiverse Splicing Patterns of Exonized Alu Elements in Human Tissues
Exonization of Alu elements is a major mechanism for birth of new exons in primate genomes. Prior analyses of expressed sequence tags show that almost all Alu-derived exons are alternatively spliced, and the vast majority of these exons have low transcript inclusion levels. In this work, we provide genomic and experimental evidence for diverse splicing patterns of exonized Alu elements in human...
متن کاملAlu Exonization Events Reveal Features Required for Precise Recognition of Exons by the Splicing Machinery
Despite decades of research, the question of how the mRNA splicing machinery precisely identifies short exonic islands within the vast intronic oceans remains to a large extent obscure. In this study, we analyzed Alu exonization events, aiming to understand the requirements for correct selection of exons. Comparison of exonizing Alus to their non-exonizing counterparts is informative because Al...
متن کاملMinimal conditions for exonization of intronic sequences: 5' splice site formation in alu exons.
Alu exonization, which is an evolutionary pathway that creates primate-specific transcriptomic diversity, is a powerful tool for studying alternative-splicing regulation. Through bioinformatic analyses combined with experimental methodology, we identified the mutational changes needed to create functional 5' splice sites in Alu. We revealed a complex mechanism by which the sequence composition ...
متن کاملLarge-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes.
Transposable elements (TEs) are major sources of new exons in higher eukaryotes. Almost half of the human genome is derived from TEs, and many types of TEs have the potential to exonize. In this work, we conducted a large-scale analysis of human exons derived from mammalian-wide interspersed repeats (MIRs), a class of old TEs which was active prior to the radiation of placental mammals. Using e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 28 10 شماره
صفحات -
تاریخ انتشار 2008