Constant Term Methods in the Theory of Tesler matrices and Macdonald Polynomial Operators

نویسندگان

  • A. M. Garsia
  • J. Haglund
  • G. Xin
چکیده

ABSTRACT The Tesler matrices with hook sums (a1, a2, . . . , an) are non-negative integral upper triangular matrices, whose i diagonal element plus the sum of the entries in the arm of its (french) hook minus the sum of the entries in its leg is equal to ai for all i. In a recent paper [6], the second author expressed the Hilbert series of the Diagonal Harmonic modules as a weighted sum of the family of Tesler matrices with hook weights (1, 1, . . . , 1). In this paper we use the constant term algorithm developed by the third author to obtain a Macdonald polynomial interpretation of these weighted sum of Tesler matrices for arbitrary hook weights. In particular we also obtain new and illuminating proofs of the results in [6].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A polynomial expression for the character of diagonal harmonics

Based on his study of the Hilbert scheme from algebraic geometry, Haiman [Invent. Math. 149 (2002), pp. 371–407] obtained a formula for the character of the space of diagonal harmonics under the diagonal action of the symmetric group, as a sum of Macdonald polynomials with rational coefficients. In this paper we show how Haiman’s formula, combined with identities involving plethystic symmetric ...

متن کامل

Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics

In [J. Haglund, A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants, Adv. Math. 227 (2011) 2092-2106], the study of the Hilbert series of diagonal coinvariants is linked to combinatorial objects called Tesler matrices. In this paper we use operator identities from Macdonald polynomial theory to give new and short proofs of some of these results. We also ...

متن کامل

Double-null operators and the investigation of Birkhoff's theorem on discrete lp spaces

Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null  operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...

متن کامل

On constant products of elements in skew polynomial rings

Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...

متن کامل

Constant Term Identities and Poincaré Polynomials

In 1982 Macdonald published his now famous constant term conjectures for classical root systems. This paper begins with the almost trivial observation that Macdonald’s constant term identities admit an extra set of free parameters, thereby linking them to Poincaré polynomials. We then exploit these extra degrees of freedom in the case of type A to give the first proof of Kadell’s orthogonality ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011