Blood Clot Simulation Model by Using the Bond-Graph Technique

نویسندگان

  • Gregorio Romero
  • M. Luisa Martinez
  • Joaquin Maroto
  • Jesus Felez
چکیده

The World Health Organization estimates that 17 million people die of cardiovascular disease, particularly heart attacks and strokes, every year. Most strokes are caused by a blood clot that occludes an artery in the cerebral circulation and the process concerning the removal of this obstruction involves catheterisation. The fundamental object of the presented study consists in determining and optimizing the necessary simulation model corresponding with the blood clot zone to be implemented jointly with other Mechanical Thrombectomy Device simulation models, which have become more widely used during the last decade. To do so, a multidomain technique is used to better explain the different aspects of the attachment to the artery wall and between the existing platelets, it being possible to obtain the mathematical equations that define the full model. For a better understanding, a consecutive approximation to the definitive model will be presented, analyzing the different problems found during the study. The final presented model considers an elastic characterization of the blood clot composition and the possibility of obtaining a consecutive detachment process from the artery wall. In conclusion, the presented model contains the necessary behaviour laws to be implemented in future blood clot simulation models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation into the performance of a new mechanical thrombectomy device using bond graph modeling: application to the extraction of blood clots in the middle cerebral artery

A number of Thrombectomy devices using a variety of methods have now been developed to facilitate clot removal. We present research involving one such experimental device recently developed in the UK, called a 'GP' Thrombus-AspirationDevice (GPTAD). This device has the potential to bring about the extraction of a thrombus. Although the device is at a relatively early stage of development, the r...

متن کامل

Analysis of the "GPATD": Geometrical Influence on Blood Clot Extraction Using CFD Simulation

In this work, we present the study of the influence of geometry on an experimental device recently developed in the UK, called the “GP” Thrombus Aspiration Device (GPTAD). This device has been designed to remove blood clots without the need to make contact with the clot itself, thereby potentially reducing the risk of problems such as downstream embolisation. To obtain the minimum pressure nece...

متن کامل

Effects of asymmetric stiffness on parametric instabilities of rotor

This work deals with effects of asymmetric stiffness on the dynamic behaviour of the rotor system. The analysis is presented through an extended Lagrangian Hamiltonian mechanics on the asymmetric rotor system, where symmetries are broken in terms of the rotor stiffness. The complete dynamics of asymmetries of rotor system is investigated with a case study. In this work, a mathematical model is ...

متن کامل

Mathematical modeling of blood clot fragmentation during flow-mediated thrombolysis.

A microscale mathematical model of blood clot dissolution based on coarse-grained molecular dynamics is presented. In the model, a blood clot is assumed to be an assembly of blood cells interconnected with elastic fibrin bonds, which are cleaved either biochemically (bond degradation) or mechanically (bond overstretching) during flow-mediated thrombolysis. The effect of a thrombolytic agent on ...

متن کامل

System Response Analysis and Model Order Reduction, Using Conventional Method, Bond Graph Technique and Genetic Programming

This research paper basically explores and compares the different modeling and analysis techniques and than it also explores the model order reduction approach and significance. The traditional modeling and simulation techniques for dynamic systems are generally adequate for single-domain systems only, but the Bond Graph technique provides new strategies for reliable solutions of multi-domain s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013