Discontinuous Galerkin method for Navier-Stokes equations using kinetic flux vector splitting
نویسنده
چکیده
Kinetic schemes for compressible flow of gases are constructed by exploiting the connection between Boltzmann equation and the Navier-Stokes equations. This connection allows us to construct a flux splitting for the NavierStokes equations based on the direction of molecular motion from which a numerical flux can be obtained. The naive use of such a numerical flux function in a discontinuous Galerkin (DG) discretization leads to an unstable scheme in the viscous dominated case. Stable schemes are constructed by adding additional terms either in a symmetric or non-symmetric manner which are motivated by the DG schemes for elliptic equations. The novelty of the present scheme is the use of kinetic fluxes to construct the stabilization terms. In the symmetric case, interior penalty terms have to be added for stability and the resulting schemes give optimal convergence rates in numerical experiments. The non-symmetric schemes lead to a cell energy/entropy inequality but exhibit sub-optimal convergence rates. These properties are studied by applying the schemes to a scalar convectiondiffusion equation and the 1-D compressible Navier-Stokes equations. In the case of Navier-Stokes equations, entropy variables are used to construct stable schemes.
منابع مشابه
A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions
The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...
متن کاملA Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions
The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...
متن کاملA Runge-Kutta discontinuous Galerkin method for viscous flow equations
This paper presents a Runge–Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at a cell interface through a simple hybrid gas distribution ...
متن کاملDiscontinuous Galerkin BGK Method for Viscous Flow Equations: One-Dimensional Systems
This paper is about the construction of a BGK Navier–Stokes (BGK-NS) solver in the discontinuous Galerkin (DG) framework. Since in the DG formulation the conservative variables and their slopes can be updated simultaneously, the flow evolution in each element involves only the flow variables in the nearest neighboring cells. Instead of using the semidiscrete approach in the Runge–Kutta disconti...
متن کاملA DGBGK scheme based on WENO limiters for viscous and inviscid flows
This paper presents a discontinuous Galerkin BGK (DGBGK) method for both viscous and inviscid flow simulations under a DG framework with a gas-kinetic flux and WENO limiters. In the DGBGK method, the construction of the flux in the DG method is based on the particle transport and collisional mechanism which not only couples the convective and dissipative terms together, but also includes both d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 233 شماره
صفحات -
تاریخ انتشار 2013