Human cortical θ during free exploration encodes space and predicts subsequent memory.

نویسندگان

  • Joseph Snider
  • Markus Plank
  • Gary Lynch
  • Eric Halgren
  • Howard Poizner
چکیده

Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trial-by-Trial Hippocampal Encoding Activation Predicts the Fidelity of Cortical Reinstatement During Subsequent Retrieval.

According to current models of episodic memory, the hippocampus binds together the neural representation of an experience during encoding such that it can be reinstated in cortex during subsequent retrieval. However, direct evidence linking hippocampal engagement during encoding with subsequent cortical reinstatement during retrieval is lacking. In this study, we aim to directly test the relati...

متن کامل

Activity in Both Hippocampus and Perirhinal Cortex Predicts the Memory Strength of Subsequently Remembered Information

It has been suggested that hippocampal activity predicts subsequent recognition success when recognition decisions are based disproportionately on recollection, whereas perirhinal activity predicts recognition success when decisions are based primarily on familiarity. Another perspective is that both hippocampal and perirhinal activity are predictive of overall memory strength. We tested the re...

متن کامل

Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study.

The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to he...

متن کامل

Enhanced Brain Correlations during Rest Are Related to Memory for Recent Experiences

Long-term storage of episodic memories is hypothesized to result from the off-line transfer of information from the hippocampus to neocortex, allowing a hippocampal-independent cortical representation to emerge. However, off-line hippocampal-cortical interactions have not been demonstrated to be linked with long-term memory. Here, using functional magnetic resonance imaging, we examined if hipp...

متن کامل

Interaction of sensory experience and age in spatial memory performances

During a critical period of postnatal age sensory experience has a profound effect on maturation of visual cortical wiring. Electrophysiological evidence is indicating a substantial effect of visual deprivation on the visual cortical response properties. In this study we evaluated effect of light deprivation during a limited time of postnatal age on two aspects of spatial (working and reference...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 38  شماره 

صفحات  -

تاریخ انتشار 2013