Wavelet Galerkin Schemes for Boundary Integral Equations-Implementation and Quadrature

نویسندگان

  • Helmut Harbrecht
  • Reinhold Schneider
چکیده

In the present paper we consider the fully discrete wavelet Galerkin scheme for the fast solution of boundary integral equations in three dimensions. It produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. We focus on algorithmical details of the scheme, in particular on numerical integration of relevant matrix coefficients. We illustrate the proposed algorithm by numerical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS

In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...

متن کامل

Wavelets for the fast solution of boundary integral equations

This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral operators. This yields quasi-sparse system matrices which can be compressed to O(NJ) relevant matrix entries without compromising the accuracy of the underlying Galerkin scheme. Herein, O(NJ) den...

متن کامل

CAS Wavelet Method for the Numerical Solution of Boundary Integral Equations with Logarithmic Singular Kernels

In this paper, we present a computational method for solving boundary integral equations with logarithmic singular kernels which occur as reformulations of a boundary value problem for Laplace’s equation. The method is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis. This approach utilizes the nonuniform Gauss-Legendre quadrature rule for appr...

متن کامل

Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates

Matrix compression techniques in the context of wavelet Galerkin schemes for boundary integral equations are developed and analyzed that exhibit optimal complexity in the following sense. The fully discrete scheme produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that is proven to stay proportional to the num...

متن کامل

A Nyström method for weakly singular integral operators on surfaces

We describe a modified Nyström method for the discretization of the weakly singular boundary integral operators which arise from the formulation of linear elliptic boundary value problems as integral equations. Standard Nyström and collocation schemes proceed by representing functions via their values at a collection of quadrature nodes. Our method uses appropriately scaled function values in l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2006