New MDS Self-Dual Codes from Generalized Reed-Solomon Codes
نویسندگان
چکیده
Both MDS and Euclidean self-dual codes have theoretical and practical importance and the study of MDS self-dual codes has attracted lots of attention in recent years. In particular, determining existence of q-ary MDS self-dual codes for various lengths has been investigated extensively. The problem is completely solved for the case where q is even. The current paper focuses on the case where q is odd. We construct a few classes of new MDS self-dual codes through generalized Reed-Solomon codes. More precisely, we show that for any given even length n we have a q-ary MDS code as long as q ≡ 1 mod 4 and q is sufficiently large (say q ≥ 4×n). Furthermore, we prove that there exists a q-ary MDS self-dual code of length n if q = r and n satisfies one of the three conditions: (i) n ≤ r and n is even; (ii) q is odd and n− 1 is an odd divisor of q − 1; (iii) r ≡ 3 mod 4 and n = 2tr for any t ≤ (r − 1)/2. Index Terms Self-dual codes, MDS codes, Generalized Reed-Solomon codes.
منابع مشابه
New MDS Euclidean and Hermitian self-dual codes over finite fields
In this paper, we construct MDS Euclidean self-dual codes which are extended cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. We also construct MDS Hermitian self-dual codes from generalized Reed-Solomon codes and constacyclic codes. And we give some results on Hermitian self-dual codes, which are the extended cyclic duadic codes.
متن کاملIsometrically Self-dual Cyclic Codes
General isometries of cyclic codes, including multipliers and translations, are introduced; and isometrically self-dual cyclic codes are defined. In terms of Type-I duadic splittings given by multipliers and translations, a necessary and sufficient condition for the existence of isometrically selfdual cyclic codes is obtained. A program to construct isometrically selfdual cyclic codes is provid...
متن کاملQuantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes
One of the central tasks in quantum error-correction is to construct quantum codes that have good parameters. In this paper, we construct three new classes of quantum MDS codes from classical Hermitian self-orthogonal generalized Reed-Solomon codes. We also present some classes of quantum codes from matrix-product codes. It turns out that many of our quantum codes are new in the sense that the ...
متن کاملNew constructions of quantum MDS convolutional codes derived from generalized Reed-Solomon codes
Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. In this paper, we give two new constructions of quantum MDS convolutional codes derived from generalized Reed-Solomon codes and obtain eighteen new classes of quantum MDS convolutional codes. Most of them are new in the sense that the parameters of the codes are different from all th...
متن کاملA general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 63 شماره
صفحات -
تاریخ انتشار 2017